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Foreword 
 
The Chips are Down! However Knowledge is Sadly Missing! 
 
The word “Internet” has become a household name in every language without any translation. Even the 
French have kept the same name while normally they tend to create a French version for any  
English name to make it sound like it’s invented in France. Now when you ask normal users how the 
Internet really functions, be prepared to be surprised by the sparse response and accept their kind 
apology that  they had no time to delve into this complex world, understandably. 
 
When you ask Internet experts on the current Internet Protocol (IPv4), you will be enriched by their 
prolific and visionary thoughts of what you can do with the Internet and most probably that it can even 
solve world hunger. However when you ask these same experts about the new Internet Protocol version 
6 (IPv6), you will find only a few that can answer with high precision how the new Internet based on IPv6 
functions, how it will be installed or how it will enhance the current Internet. I guess most Internet 
experts have by now understood that the visible difference between IPv4 and IPv6 is the size of the 
address space moving from a limited to virtually unlimited resource (from 4.3 Billion addresses to 340 
Billion Billion Billion Billion addresses).  
 
While basic IPv6 was designed and standardized between 1994-1998 and deployment has been 
happening at a slow pace for the last 10 years, it is astonishing to see the same historical deployment 
patterns of the current Internet Protocol (IPv4). That was designed between 1972-1980 with first 
deployment in 1981. It had to wait for ten years until 1991 for the Internet to be opened for public use 
per US Congress agreement. The number of IPv4 experts was quite small and not surprisingly it’s the 
same level of IPv6 experts that we have now. 
 
The Internet community is asking for killer apps to facilitate justifiable deployment of IPv6. Now, without 
educated engineers at developers level and ISP levels, it is unreasonable to expect creation of such apps 
that would benefit from the new built-in features in IPv6. The principal feature of IPv6 is the restoration 
of the end-to-end model on the back of which the Internet was built on in the first place. The e2e model 
restores e2e connectivity, e2e security, e2e QoS, node reachability, remote access for maintenance and 
network management purposes.  Essential features have been tightly redesigned like mobility, 
Multicast, auto-configuration, to take the Internet where it has not gone before. IPv6 will take the 
Internet into commodity services adding networking value to services like RF-ID and sensors. IPv6 will 
open new paradigms for Internet of Things, Smart Grids, Cloud Computing, Smart Cities, 4G/LTE 
services, etc.  
 
To realise this we need to have engineers professionally trained with IPv6 eyes and not with IPv4 eyes. A 
recent survey on IPv6 training and studies at universities has demonstrated that IPv6 training and 
courses are way too embryonic to have any critical impact. Patching IPv6 with IPv4 thinking would be 
just extending the IPv6 address space to the Internet and not fully exploiting the rich set of new features 
still invisible to the normal engineer. Deploying IPv6 without upfront integration of IPv6 security and 
privacy is re-doing the same mistake done in the deployment of IPv4. This is even defeating the prime 
purpose of fixing thing like security in the Internet. It is estimated that some 20 million engineers are 
working on the current Internet worldwide at ISPs, corporate and all other public and private 
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organisations and they will need training on IPv6. This is a gigantic task since it’s the first upgrade of the 
Internet and most probably the last one for decades to come. 
 
There are also tools that address IPv6 issues that have been designed by the author that will play key 
roles in the deployment of IPv6 such as DHCPv6, DNSSECv6, IDN, etc. The author brings practical and 
hands-on experience to take enthusiast engineers to the next level with astonishing intricate knowledge 
pretty rare to find in this diffuse Internet world not knowing who holds the truth. 
 
I encourage everyone to read this book as you will enjoy it like I did as the author is pretty crystal clear, 
precise, authoritative and written directly from his heart. 
 
Latif Ladid 
President IPv6 Forum 
Senior Researcher, University of Luxembourg 
Emeritus Trustee, Internet Society 
UN Strategy Council member 
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Chapter 1 – Introduction 
 
1.1 – Why IPv6 is Important 
 
The First Internet (which I now call the Legacy Internet) is 27 years old. Think about what kind of CPUs, 
amount of RAM, and which Operating System you were using in 1983. Probably a Z80 8-bit CPU with 64 
Kilobytes of RAM and CPM/80, or if you were a businessman, an 8088 “16-bit” CPU and DOS 1.0. If you 
were really lucky, you might have had an expensive Hard Disk Drive with a massive TEN megabytes of 
storage. What, many of you reading this weren’t even alive then? Ask your father what personal 
computing was like in 1983. I’ve been building, programming and applying personal computers since my 
Altair 8800 in 1975. Hard to realize that is 35 years ago. Since 1983, network speeds have increased 
from 10 Mbit/sec to 100 Gbit/sec (10,000 fold increase). But we are still using essentially the same 
Internet Protocol. Think it’s about time for an upgrade? 
 
The First Internet has impacted the lives of more than a billion people. It has led to unprecedented 
advances in computing, communications, collaboration, research and entertainment (not to mention 
time-wasting and even less savory activities). The Internet is now understood to be highly strategic in 
every modern country’s economy. It is difficult to conceive of a country that could exist without it. Many 
enormous companies (such as Google) would not have been possible (or even needed) without it. 
Staggering amounts of wealth have been created (and consumed) by it. It made “snail mail” (paper mail 
physically delivered) follow the Pony Express into oblivion (amazingly, governments everywhere are 
trying to keep Post Offices going, even though most lose gigantic amounts of money every year). The 
number of e-mails sent daily is 3 to 4 times the number of first class mails sent annually (both in the 
U.S.) 
 
Estimates are that there are currently about 1.3 billion nodes (computers, servers or other network 
devices) connected to the First Internet. Many of those have more than one user (as in Cyber cafes).  
 
 
1.1.1 – But Wait, There’s More…. 
 
If you think that’s impressive, wait until you see what its rapidly approaching successor, the Second 
Internet (made possible by IPv6) will be. Entirely new and far more flexible communication and 
connectivity paradigms are coming that will make e-mail and texting seem quaint. Major areas of the 
economy, such as telephony, entertainment, almost all consumer electronic devices (MP3 players, TVs, 
radios) will be heavily impacted, or even collapse into the Second Internet as Yet More Network 
Applications (like e-mail and web did in the First Internet). The number of connected nodes will likely 
explode in the next 5-10 years by a factor of a hundred or more (not by 100%, I said by a factor of 100, 
which is 10,000%). The First Internet (the one you are using today, based on IPv4) that you think is so 
pervasive and so cool, is less than 1% of the expected size of the Second Internet. One of the popular 
terms being used to describe it is pervasive computing. That means it is going to be everywhere. 
 
 
1.1.2 – Flash! The First Internet is Broken! 
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Most importantly, in the process of keeping IPv4 around too long, we’ve already broken the First 
Internet badly with something called NAT (Network Address Translation). NAT has turned the Internet 
into a one-way channel, introduced many really serious security issues and is impeding progress on 
newer applications (like VoIP and IPTV).You can easily make outgoing connections to servers like 
www.cnn.com, but it is difficult or impossible for other people to make connections to you. It has 
divided the world into a few producers (like cnn.com) and millions of consumers (like you). In the Second 
Internet, anyone can be a prosumer (producer and consumer). NAT was a necessary evil to keep things 
going until the Second Internet was ready to be rolled out. NAT has now served its purpose, and like 
crutches when your broken leg has healed, should be cast aside. Its only purpose was to extend the life 
of the IPv4 address space while the engineers were getting IPv6 ready.  
 
Using a “horses and cars” metaphor, there is no reason to wait for the last horse to die (the last IPv4 
address to be given out) before we start driving cars (deploy IPv6). Good news, everyone! IPv6 is ready 
for prime time today. My home is already fully migrated to dual stack (IPv4 + IPv6). And that’s in the 
Philippines! 
 
 
1.1.3 – Wait, How Can the Internet Grow by 100 Fold? 
 
If there are over a billion nodes on the First Internet, and there are just over 6 Billion people alive, how 
can it possibly grow by more than 100 fold? The key here is to understand that the Second Internet 
(based on IPv6) is the Internet of Devices. A human sitting at a keyboard will be a relatively rare thing, 
although IPv6 will make it far easier and cheaper to bring the next billion humans online using IPv6’s 
advanced features and almost unlimited address space. Many Asian countries and companies (who 
routinely have 5 to 10 year horizons in their planning) already consider IPv6 to be one of the most 
strategic and important technologies anywhere, and are investing heavily in deploying it. 2010 is the 
tipping point for IPv6. Adoption curves are starting to climb at steep rates reminiscent of the adoption of 
the World Wide Web back in the early 1990s. By March 2012 (when the last IPv4 address will likely be 
allocated to some lucky end-user), the migration to IPv6 will be well underway in most leading 
countries, and completed in many Asian countries. 
 
 
1.1.4 – Why is 2011 a Significant Year for the Second Internet? 
 
There is an entire chapter in this book on the depletion of the IPv4 address space. What this means (in 
English) is that we are running out of IP addresses for the First Internet. This will be a very important 
event in the history of the Internet. We nearly ran out in 1997, and only managed to keep the Internet 
going through some clever tricks (NAT and Private Addresses), kind of like using private extension 
numbers in a company PBX phone system. However, even with this trick (which is now causing major 
problems), we are about to run out for good. The folks that create the Internet don’t have any more 
clever tricks up their sleeves. All the groups that oversee the Internet, like the Internet Assigned 
Numbers Authority (IANA), the Internet Corporation for Assigned Names and Numbers (ICANN), the 
Internet Society (ISOC), the Internet Engineering Task Force (IETF) and the Regional Internet Registrars 
(ARIN, RIPE, APNIC, LATNIC and AFRINIC) have been saying for some time that the world has to migrate 
now. They should know. They are the ones that give out IP addresses. They know that the barrel is 
almost empty. We’ve got to increase the number of unique Internet addresses, which has some far 
reaching consequences. 
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1.2 – An Analogy:  the Amazing Growing Telephone Number 
 
When I was very young, my family’s telephone had a 5 digit phone number (5-4573). As the number of 
phones (and hence unique phone numbers within my geographic region) grew, the telephone company 
had to increase the length of everyone’s phone number. Our number became 385-4573. This was 
enough to give everyone in my area a unique number, and we could ask the nice long distance operator 
to connect us to people in other areas when we wanted to talk with them. When the telcos introduced 
the miracle of Direct Distance Dialing, our phone number grew to 10 digits: (904) 385-4573. In theory, 
this could provide unique numbers to 1010 (10 billion) customers. In practice some digit patterns cannot 
be used, so it is somewhat less than that, and today many people have multiple phone numbers 
(landline, cell phone, fax, modem, VoIP, etc). Estimates are that the current supply of 10 digit numbers 
will last U.S. subscribers at least 50 more years. Increases in the length of phone numbers may be an 
inconvenience to end users (and publishers of phone books), but the tricky problems are mostly in the 
big phone switches. Phone number lengths have been changed several times without leading to the 
collapse of civilization. 
 
One popular estimate (from NetCore) is that the IP addresses for the First Internet will be all gone, 
history, used up by September 16, 2011 (as estimated on February 15, 2010, subject to many revisions 
before that last address is assigned, but probably to earlier dates, not later ones). That is the date that 
the IANA will tell Regional Internet Registries like ARIN, RIPE and APNIC, that there are no more to 
replenish their supplies. The RIRs will likely have enough on hand to last another six months at most. I 
have personally joined APNIC as a member and reserved a “/22” block of IPv4 addresses (a little over 
1000 of the precious, and increasingly scarce addresses for the First Internet). These will cost me about 
1000 USD per year, but I will be able to continue running my companies and other activities for many 
years to come. You can think of this as staking out some of the last remaining lots in a virtual Oklahoma 
Land Rush. I am also doing this in order to obtain my very own “/32” block of the shiny new IPv6 
addresses. You can think of this as getting an enormous spread of prime real estate in the virtual New 
World of the Second Internet. Anyone that wants to today can do the same thing (at least for a little 
while longer). I understand what’s coming, and I know what I’ll be able to build on that prime real 
estate. I think it’s a hell of a bargain. 
 
 
1.3 – So Just What Is It That We Are Running Out Of? 
 
There is a great deal of confusion and misunderstanding about this, as important as it is. Many people 
think that “internet addresses” are things like www.ipv6.org. That is not an Internet Address, it is a 
symbolic nodename. That is an important part of a URI (Uniform Resource Indicator), which adds things 
such as a protocol designator (e.g. http:, mailto: or sip:), possibly a non-standard port number (e.g. 
“:8080”) and often a file path (e.g. “/files/index.html”). If you allowed up to 30 characters for a 
nodename (the preceding example being 14 characters long) and allowed any alpha or numeric 
character and the hyphen (a-z and 0-9 and “-“), which are all legal in Internet nodenames, this would 
give a total of 37 possible characters in each position. That means there are 3730 (1.11 x 1047) possible 
nodenames, although most of them would be really obscure and hard to remember, like 
poas5jdpof343jijio.iuhiu3hu4ifer.com. That’s a lot of names. There is still a staggering number of names 
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that are easy to remember. More than could ever be used in the next hundred years. So just what is it 
that we are running out of? 
 
The nodenames that you (and most humans) use to specify a particular node on the Internet, like 
www.ipv6.org, are made possible by something called the Domain Naming System (DNS). Those 
nodenames are not used in the actual packets as source and destination addresses (see section on IPv4 
addressing model for the gory details). The addresses used in the packets on the wire in the First 
Internet are 32 bit binary numbers. These are usually represented for us slow and stupid humans in 
dotted decimal notation like 123.45.67.89. With a 32 bit address, there are 232 (about 4.3 billion) distinct 
values. When you use a symbolic nodename (known technically as a Fully Qualified Domain Name, or 
FQDN) in an application, that application sends it to a DNS server, which returns the numeric IP address 
associated with it. That’s the address that is used in packets on the wire, for routing the packet to its 
destination. The DNS nodenames are like the names of people you call, the IP addresses are like their 
phone numbers. DNS is like an online telephone book that looks up the “phone number” (IP address) for 
“people” (nodes) you want to “call” (connect to). Did you know that you can surf to IP addresses? Try 
entering the URL http://15.200.2.21. That’s a whole lot harder to remember than www.hp.com, which is 
why DNS was invented. It’s these 32 bit numeric addresses (that most people never see) that we are 
running out of. The good news is that you can keep typing www.hp.com, and DNS will soon return both 
the old style 32 bit IPv4 address and a new style 128 bit IPv6 address, which will be put into IPv6 
packets.  Given the choice, your applications will prefer to use the new IPv6 address. You will hardly 
notice the difference, unless you are a network engineer or a network software developer. Except 
there’s going to be an awfully lot of cool new stuff to do, and new ways of doing old things, plus the 
Internet is going to work better than it ever has. 
 
Can you imagine trying to manage today with 5 digit telephone numbers? In a few years, that’s what 
IPv4 is going to feel like. 
 
 
1.4 – But You Said There Were 4.3 Billion IPv4 Addresses? 
 
But, I hear you protest, there are only 1.3 billion nodes currently connected to the Legacy Internet, and 
there are 4.3 billion possible IPv4 addresses. Aren’t there still some 3 billion addresses left? Well, no, sad 
to say, there aren’t.  
 
On February 15, 2010 (when I started writing this book), there were only 364 million addresses left to 
assign (again, from the NetCore countdown clock). On May 12, 2010 (3 months later), there were only 
298 million addresses left. What the heck happened to the rest? Well, when the First Internet was being 
rolled out, there were about 600 nodes in the world, and 4.3 billion looked a lot like “infinity” to the 
people involved. So, giant chunks of addresses were generously given out to early adopter 
organizations. For example, M.I.T. and HP were given “class A” blocks of addresses (about 16.7 million 
addresses, or 1/256 of the total address space, each). Smaller organizations were given “class B” blocks 
of addresses (each having about 65,535 addresses). Most of these organizations are not using anywhere 
near all of those addresses, but they have never been willing to turn them back in. As detailed in the 
OECD study on IPv4 address space depletion and migration to IPv6, it is very difficult and time 
consuming to “recover” these “lost” addresses. Also some blocks of addresses were used for things like 
multicast, experimental use, and other purposes.  
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We are getting more efficient in our allocation of IPv4 addresses, but even with every trick we know, 
they will likely all be gone by March 2012, or before. It is easy to measure how quickly IP addresses are 
being allocated, and how many are left, so it’s not exactly rocket science to predict when they will run 
out. These projections assume there will be no “bank run” or panic allocations as we get near the bottom 
of the barrel, or increases in the rate that addresses are allocated. Both of these assumptions are really 
optimistic. That’s why I keep saying “or sooner”. The people of Taiwan have announced their intention 
to connect some 3 billion devices to the Internet in the next few years. Even if we gave them all 298 
million of the remaining addresses, they still could not connect that many devices. They can only do this 
by going to longer IP addresses (hence a larger address space). This is one of the main things that IPv6 is 
about. 
 
 
1.5 – Is IPv6 just an Asian Thing? 
 
I have heard many comments from U.S. networking professionals and Venture Capitalists that IPv6 is an 
“Asian thing”, something that is of little interest or concern to Americans. This shows an unusually 
provincial view of an extremely serious situation, even for Americans. This attitude is only partly due to 
the inequitable distribution of addresses for the First Internet (there are over 6 IPv4 addresses per 
American, compared to only about 0.28 per person for the rest of the world). It has a lot more to do 
with a lack of knowledge of how certain parts of the First Internet really work, compounded by a limited 
time horizon compared to Asian businessmen, who routinely plan 5 to 10 years ahead. America business 
schools teach that nothing is important beyond the next quarter’s numbers. The depletion of IPv4 
addresses is beyond the end of next quarter, but not by very much. Expect a major panic when the IPv4 
depletion date comes within the time horizon of American businessmen (“why didn’t you warn us about 
this?”). 
 
Any country or organization that (for whatever reason) doesn’t migrate to IPv6 is going to still be “riding 
horses” while the rest of us are zipping around in these newfangled “cars”. I have nightmares about the 
U.S. being just as reluctant to go to IPv6 as they were to adopt the metric system (the U.S. is the only 
industrialized country not to have adopted the metric system, and I doubt they ever will). They could 
decide to stay with IPv4. If so, it will become increasingly difficult for them to connect to non-U.S. 
websites, or for people in other countries to connect to U.S. websites. It will impact all telephone calls 
between the U.S. and anywhere else in the world. It will make IT products designed for the U.S. market 
of little interest outside of the U.S. (kind of like automobiles that can’t be maintained with metric tools). 
This will isolate the U.S. even further, and essentially leave leadership in Information Technology up for 
grabs. Japan, China and South Korea are quite serious about grabbing that leadership, and they are well 
along their way to accomplishing this, by investing heavily in IPv6 for several years already. 
 
Being good engineers, while the IETF has the “streets dug up” increasing the size of IP addresses, they 
are fixing and enhancing many of the aspects of IPv4 (QoS, multicast, routing, etc.) that weren’t done 
quite as well as they might have been (who could have envisioned streaming video 27 years ago?). IPv6 
is not just bigger addresses. It’s a whole new and remarkably robust platform on which to build the 
Second Internet. 
 
 
1.6 – So What is This “Second Internet”? 
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Most things in computer technology evolve through various releases or generations, with significant 
new features and capabilities in the newer generations. For example, 2G, 2.5G and 3G cell phones. The 
Internet is no exception. The remarkable thing though, is that the first generation of the Internet has 
lasted for 27 years already, and we are only now coming to the second generation of it. There are a 
number of technology trends going on right now, and some of them have been hyped heavily in the 
press. Some of them sound a lot like they might be the next generation of the Internet. Let’s see if we 
can narrow down what I mean by “the Second Internet” by discussing some the things that it is not. 
 
 
1.6.1 – Is the Next Generation Network (NGN) that Telcos Talk About, the Second Internet? 
 
Telcos around the world have been moving towards something they call NGN for some time. Is that the 
same thing as the Second Internet? Well, there is certainly a lot of overlap, but no, NGN is something 
quite different.  
 
Historically, telephone networks have been based on a variety of technologies, mostly circuit switched, 
with call setup handled by SS7 (Signaling System 7).  The core of the networks might be digital, but 
almost the entire last mile (the part of the telco system reaching from the local telco office into your 
homes and businesses) is still analog today.  There was some effort at upgrading this last mile to digital 
with ISDN (Integrated Services Digital Networks), but some terrible decisions regarding tariffs (the cost 
of services) pretty much killed ISDN in many countries, including the U.S. 
 
The ITU (International Telecommunication Union), an agency of the United Nations that has historically 
overseen telephone systems worldwide, defines NGN as packet-switched networks able to provide 
services, including telecommunications, over broadband, with Quality of Service enabled transport 
technologies, and in which service-related functions are independent from underlying transport-related 
technologies. It offers unrestricted access by users to different telecommunication service providers. It 
supports generalized mobility which will allow consistent and ubiquitous service to users. 
 
In practice, telco NGN has three main aspects: 
 

 In telco core networks, there is a consolidation (or convergence) of legacy transport networks 
based on X.25 and Frame Relay into the data networks based on TCP/IP (still, alas, mostly 
TCP/IPv4 so far). It also involves moving from circuit switched (mostly analog) voice technology 
(the Public Switched Telephone Network, or PSTN) to Voice over Internet Protocol (VoIP). So far, 
the move to VoIP is mostly internal to the telcos. What is in your house and company is good old 
POTS (Plain Old Telephone Service). 

 In the “last mile”, NGN involves migration from legacy split voice and data networks to Digital 
Subscriber Line (DSL), making it possible to finally remove the legacy voice switching 
infrastructure.  

 In cable access networks, NGN involves migration of constant bit rate voice to Packet Cable 
standards that provide VoIP and SIP services. These are provided over DOCSIS (Data Over Cable 
Service Interface Specification) as the cable data layer standard. DOCSIS 3.0 does include good 
support for IPv6, though it requires major upgrades to existing infrastructure. There is also a 
“DOCSIS 2.0 + IPv6” standard which supports IPv6 even over the older DOCSIS 2.0 framework, 
typically requiring only a firmware upgrade in equipment. That will likely get rolled out before 
DOCSIS 3.0 can be (DOCSIS 3.0 requires hardware upgrades). 
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A major part of NGN is IMS (the IP Multimedia Subsystem). To understand IMS, I highly recommend the 
book “The 3G IP Multimedia Subsystem (IMS) – Merging the Internet and the Cellular Worlds”, by 
Gonzalo Camarillo and Miguel A. Gaccia-Martin. This was published by John Wiley & Sons, in 2004. This 
book says that IMS (which is the future of all telephony) was designed to work only over IPv6, using 
DHCPv6, DNS over IPv6, ENUM, and SIP/RTP over IPv6. IMS is so IPv6 specific, that some of the primary 
concerns are how legacy IPv4-only SIP based user agents (hardphones and softphones) will 
communicate with the IPv6 core. One approach is to use dual-stack SIP proxies that can in effect 
translate between SIP over IPv4 and SIP over IPv6. Translation of the media component (RTP) is a bit 
trickier, and will be handled by Network Address Translation between IPv4 and IPv6.  Newer IPv6 
compliant user agents will be able to interoperate directly with the IMS core, without any gateways, and 
solve many problems. They are beginning to appear. I am using some from a great little company in 
Korea called Moimstone in my home today. 
 
The first “Internet over telco wireless service” in early 2G networks was WAP (Wireless Application 
Protocol).WAP 1.0 was released in April 1998. WAP 1.1 followed in 1999, followed by WAP 1.2 in June 
2000. The Short Messaging System (SMS) was introduced. Only IPv4 was supported. Speed and 
capabilities were somewhat underwhelming. 
 
2.5G systems improved on WAP with GPRS (General Packet Radio Service), with theoretical data rates of 
56 to 114 Kbits/sec. GPRS included “always on” Internet access, Multimedia Messaging Service (MMS), 
and Point-to-point service. It increased the speed of SMS to about 30 messages/sec. Even Filipinos can’t 
text that fast. As with WAP, only IPv4 was supported. 
 
2.75G systems introduced EDGE (Enhanced Data Rates for GSM Evolution), also known as EGPRS 
(Enhanced GPRS). EDGE service provided up to 2 Mbit/sec to a stationary or walking user, and 348 
Kbit/sec in a moving vehicle. IPv6 service has been demonstrated over EDGE, but is not widely deployed. 
 
3G systems introduced HSPA (High Speed Packet Access), which consisted of two protocols, HSDPA 
(High Speed Downlink Packet Access) with theoretical speeds of up to 14 Mbit/sec service, and HSUPA 
(High Speed Uplink Packet Access) with up to 5.8 Mbit/sec service. Real performance was again 
somewhat lower, but better than with EDGE. HSPA had good support for IPv6.  
 
The last gasp for 3G (sometimes called “3.9G”) is LTE (Long Term Evolution). LTE is completely based on 
IP, and primarily (but as of recent versions of the 3GPP specification, no longer exclusively) based on 
IPv6. Earlier versions of the specification clearly described it with IPv6 mandatory and IPv4 support 
optional. It has now been reworded to make most aspects “IPv4v6” (dual-stack). 3G was still based on 
two parallel infrastructures (circuit switched and packet switched). LTE is packet switched only (“All IP”). 
There are a few deployments of LTE (some of which are described incorrectly as “4G”) around the world. 
 
4G systems (now being designed) complete the transition to all IP and even higher speed wireless 
transports. They will use an all-IP infrastructure for both wired and wireless. The specification for 4G 
claims peak downlink rates of at least 100 MBit/sec, and uplink of at least 50 Mbit/sec. 4G requires a 
“flat” IP infrastructure (no NAT), which can only be accomplished with IPv6. IPv4 address space 
depletion will happen before 4G is rolled out, so IPv4 is not even an option. IPTV is a key part of 4G, 
which requires fully functional multicast, scalable to very large customer bases. That also requires IPv6. 
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So, clearly the Telco’s NGN is moving more and more towards IPv6 in the near future, but current 
deployments are still mostly IPv4. However, NGN is just as clearly not the Second Internet described in 
this book. You might say that NGN (once it reaches 4G) will be just another one of the major applications 
hosted on the Second Internet.  
 
There will be much more to the Second Internet than just telephony, including most broadcast 
entertainment, exciting new possibilities for non-telephonic communication paradigms (fully 
decentralized instant messaging, and peer-to-peer collaboration), smart building sensor and control 
systems, and ubiquitous connectivity in essentially all consumer electronics, including MP3 players, 
electronic book readers, cameras and personal health monitoring. It will also impact automotive design. 
See www.car-to-car.org for some exciting new concepts in “cooperative Intelligent Transport Systems” 
that depend heavily on IPv6 concepts such as Networks in Motion (NEMO, RFC 3963) and ad-hoc 
networks. In fact, only IPv6 is being used in their designs, although it is a slightly modified version of IPv6 
that is missing some common functionality such as Duplicate Address Detection. Their modified IPv6 
runs on top of a new, somewhat unusual Link Layer called the C2C Communication Network, which itself 
is built on top of IEEE 802.11p, also known as WAVE (Wireless Access in Vehicular Environments). 
  
 
1.6.2 – Is Internet2 the Second Internet? 
 
Internet2 is an advanced academic and industrial consortium led by the research and education 
community, including over 200 higher education institutions and the research departments of a number 
of large corporations. They have deployed a world-wide research network called the Internet2 Network. 
While IPv6 is definitely being used on the Internet2 network, their scope goes well beyond IPv6, in such 
areas as network performance. The first part of the Internet2 network (called Abilene) was built in 1998, 
running at 10Gbit/sec (even over WAN links). It was associated with the National Lambda Rail (NLR) 
project for some time. Internet2 and NLR have since split and moved forward along two different paths. 
Today, most links in the global Internet2 network are running at 100Gbit/sec. This is over 1000 times 
faster than typical WAN links used by major corporations today. It is even 10 to 100 times faster than 
state of the art LANs. 
 
Internet2 also features advanced research into secure identity and access management tools, on-
demand creation and scheduling of high-bandwidth, high-performance circuits, layer 2 VPNs and 
dynamic circuit networks (DCNs).  
 
A recent survey of Internet2 sites showed that only a small percentage of them have even basic IPv6 
functionality deployed, such as IPv6 DNS, e-mail or VoIP over IPv6.  
 
Essentially Internet2 is primarily concerned more with extreme high-end performance (100Gbit/sec and 
up), and very advanced networking concepts not likely to be used in real-world systems for decades. 
Although they do profess support for IPv6, they have not aggressively deployed it, and it is definitely not 
central to their efforts. They are doing little or no work on IPv6 itself, or in new commercial applications 
based on IPv6. I guess those areas are not very exciting to academicians. 
 
The real world Second Internet I am writing about in this book will be built primarily with equipment that 
mostly has the same performance as current First Internet sites (no more than 100Mbit/sec on WAN 
links for some time to come, and only that high in advanced countries). In much of the world today 
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1.5Mbit/sec to 10Mbit/sec is considered good. Maybe 100Gbit/sec will be widely deployed by 2030 to 
2040, but ultra high performance is not necessary to provide the revolutionary benefits described in this 
book. To give you an idea, Standard Definition (SD) TV requires about 2Mbit/sec bandwidth per channel, 
and High Definition (HD) TV requires about 7 to 10 MBit/sec bandwidth per simultaneously viewed 
channel. That is about the most bandwidth intensive application you will likely see for most users for 
some time to come. Voice only requires about 8 to 64 Kbit/sec for good quality. In Japan and Korea 
today, home Internet accounts typically have about 50 to 100 Mbit/sec performance. In my hotel room 
in Tokyo recently, I measured 42 Mbit/sec throughput. That is enough for almost any use today. Most 
users would be really challenged to make effective use of 100 Gbit/sec bandwidth, even in companies. 
With that bandwidth you could download the entire Encyclopedia Britannica in just a few seconds 
(including images), or an entire Blu-Ray movie (about 25 GBytes on average) in about 2 seconds. 
 
The necessary equipment and applications for the Second Internet can in many cases be created with 
software or firmware upgrades (except for older and low-end devices that don’t have enough RAM or 
ROM to handle the more complex software, and in high end telco and ISP products that include 
hardware acceleration). If you look at the products created by my company (www.infoweapons.com), 
you will see what I think are some of the most important components that are needed to build the 
Second Internet: a dual stack DNS/DHCP appliance, a dual stack firewall with 6in4 tunneling, and a dual 
stack VoIP server (IP PBX). We will soon be releasing a dual stack network monitoring appliance as well. 
 
The main technical advantages of the Second Internet will not be higher bandwidth, but the vastly larger 
address space, the restoration of the flat address space (elimination of NAT), and the general availability 
of working multicast. All of these are made possible by migration to IPv6, which involves insignificant 
costs compared to supporting 100Gbit/sec WAN links. Perhaps generally available WAN bandwidth in 
that range will be what characterizes the Third Internet. 
 
You can find out more about Internet2 on their homepage, http://www.internet2.edu. 
 
So, Internet2 (despite the name) is not the Second Internet I am writing about. Internet2 is primarily an 
academic exercise that will not bear fruit for many decades. What they are doing is very important in 
the long run, but it does not address, and will not solve, the really major problems facing the First 
Internet today. The Second Internet is being rolled out today, and will be largely functional before the 
last IPv4 address is given out by the RIRs, probably sometime in 2011. That event will mark the end of 
the First (IP4-only) Internet. 
 
 
1.6.3 – Is Web 2.0 the Second Internet? 
 
First, if you think that the terms “World Wide Web” and “Internet” are synonymous, let me expand your 
worldview bit, in the same way that Copernicus did for people’s view of our Solar System back in the 
mid 1500s. The “World Wide Web” is basically one service that runs on a much larger, more complex 
thing which is called the Internet. The web is a simple client-server system based on HTTP (HyperText 
Transfer Protocol) and HTML (HyperText Markup Language). Due to extremely serious limitations and 
inefficiencies of these standards, both have been enhanced and extended numerous times. The result is 
still not particularly elegant to real network software designers or engineers, but it has clearly had a 
major impact on the world. The technology of the web was a refinement and convergence of several 
ideas and technologies that were in use before HTML and HTTP were created by Tim Berners-Lee in the 
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late 1980s, at CERN. But there is lot to the Internet beyond the web (e-mail, instant messaging, video 
conferencing, VoIP, file transfer, P2P, VPNs, IPTV, etc). There are thousands of Internet protocols, of 
which the web uses two (HTTP and HTTPS). 
 
HyperText, WAIS/SGML and Gopher 
 
The terms HyperText and HyperMedia were coined by Ted Nelson in 1965, at Brown University. These 
terms referred to online text documents (or rich media, including pictures, sound, and other media 
content) that contained links that allowed building paths from any word or phrase in the document to 
other parts of the same document, or parts of other documents that were also online. In August 1987, 
Apple Computer released the first commercial HyperText based application, called HyperCard, for the 
Macintosh. There were already document storage and retrieval systems on the early Internet, such as 
WAIS (Wide Area Information Server). WAIS was based on the ANSI Z39.50:1988 standard, and was 
developed in the late 1980s by a group of companies including Thinking Machines, Apple Computer, 
Dow Jones and KPMG Peat Marwick. As with the web, there were both WAIS servers and clients. A later 
version of WAIS was based on ANSI Z39.50:1992, which included SGML (Standard Generalized Markup 
Language, ISO 8879:1986) for more professional looking documents. There was another Internet 
application called Gopher (University of Minnesota, circa 1991) that could distribute, search for, and 
retrieve documents. Gopher was also primarily text based, and imposed a very strict hierarchical 
structure on information. 
 
HTML and HTTP 
 
Tim Berners-Lee combined these three concepts (HyperText, WAIS/SGML and Gopher document 
retrieval) to create HTTP and HTML. HTML was a very watered down and limited markup language 
compared to SGML. SGML is capable of created highly sophisticated, professional looking books. IN 
comparison, HTML allows very limited control over the final appearance of the document on the client’s 
screen. HTTP was a very simple protocol designed to serve HTML documents to HTTP client programs 
called web browsers. A basic HTTP server can be written in one afternoon, and consists of about half a 
page of the C programming language (I’ve done it, and retrieved documents from it with a standard 
browser). The first browser (Lynx, 1992) was very limited (text only, but including hypertext links). In 
1993, at the National Center for Supercomputing Applications (NCSA) at the University of Illinois, the 
first Mosaic web browser was created (running on X Windows in UNIX). Because it was created for use 
on X Windows (a platform with good support for computer graphics), many graphics capabilities were 
added. With the release of web browsers for PC and Macintosh, the number of servers went from 500 in 
1993 to 10,000 in 1994. The World Wide Web has since grown to millions of servers and many versions 
of the web client (Internet Explorer, Mozilla Firefox, Safari, Opera, Chrome, etc). It’s been so successful 
that a lot of people today think that the World Wide Web is the Internet. 
 
Web 2.0 
 
The term Web 2.0 was first coined by Darcy DiNucci in 1999, in a magazine article. The current usage 
dates from an annual conference that began in 2004, called “Web 2.0”, organized and run by Tim 
O’Reilly (owner of O’Reilly Media, publisher of many excellent computer books).  
 
Many of the promoters of the term Web 2.0 characterize what came before (which they call Web 1.0) as 
being “Web as Information Source”. Web 1.0 is based on technologies such as PHP, Ruby, ColdFusion, 
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Perl, Python and ASP (Active Server Pages). In comparison, Web 2.0 is “Network as Platform”, or the 
“participatory web”. It uses some or all of the technologies of Web 1.0, plus new things such as 
Asynchronous JavaScript, XML, Ajax, Adobe Flash and Adobe Flex. Typical Web 2.0 applications are the 
Wiki (and the world’s biggest Wiki, the Wikipedia), blogging sites, social networking sites like FaceBook, 
video publishing sites like YouTube, photographic snapshot publishing sites like Flickr, Google Maps, etc. 
 
Andrew Keen (British-American entrepreneur and author) claims that Web 2.0 has created a cult of 
digital narcissism and amateurism, which undermines the very notion of expertise. It allows anyone 
anywhere to share their own opinions and content, regardless of their talent, knowledge, credentials, or 
bias. It is “creating an endless digital forest of mediocrity: uninformed political commentary, unseemly 
home videos, embarrassingly amateurish music, unreadable poems, essays and novels.” He also says 
that Wikipedia is full of “mistakes, half truths and misunderstandings”. Perhaps Web 2.0 has made it too 
easy for the mass public to participate. Tim Berners-Lee’s take on Web 2.0, is that it is just a “piece of 
jargon”. In the finest tradition of Web 2.0 these comments, which were found in the Wikipedia article on 
Web 2.0, probably include some mistakes, half-truths and misunderstandings. 
 
Basically, Web 2.0 does not introduce any revolutionary new technology or protocols; it is more a 
refinement of what was already being done on the web, in combination with a new emphasis on end-
users becoming not just passive consumers, but also producers of web content. The Second Internet will 
actually help make Web 2.0 work better, as it removes the barriers that have existed in the First Internet 
since the introduction of NAT to anyone becoming a producer of content. If anything, on the Second 
Internet, these trends will be taken even further by decentralizing things. There will be no need for 
centralized sites like YouTube or Flickr to publish your content, just more sophisticated search engines 
or directories that will allow people to locate content that will be scattered all over the world. Perhaps 
that will be the characterizing feature of Web 3.0?  
 
Web 2.0 is a really minor thing compared to the Second Internet. What isn’t pure marketing hype is an 
evolutionary development of one of the major services (the World Wide Web) out of perhaps a dozen 
that the Second Internet will be capable of hosting. These include global telephony, newer forms of 
communication like decentralized instant messaging, major new Peer to Peer applications (not just file 
sharing), global broadcast entertainment via multicast IPTV, connectivity between essentially all 
consumer electronic products, personal healthcare sensor nets, smart building sensor nets, etc.  
 
 
1.7 – Whatever Happened to IPv5? 
 
Two of the common questions people ask when they start reading about IPv6 is “If it’s the next version 
after IPv4, why isn’t it called IPv5?” and “What happened to the first three versions of IP?”  
 
There is a four bit field in every IP packet header that contains the IP version number in binary. In IPv4, 
that field contains the binary value 0100 (4 in decimal) in every packet. An earlier protocol (defined in 
RFC 1190, “Experimental Internet Stream Protocol, Version 2 (ST-II)”, October 1990) used the binary 
pattern 0101 (5 in decimal) in the IP version field of the packet header. The Internet Stream Protocol 
was not really a replacement for IPv4, and isn’t even used today, but unfortunately the binary pattern 
0101 was allocated to it. The next available bit pattern was 0110 binary (6 in decimal). It would be even 
more embarrassing than explaining that there was no IPv5, to explain why the IP Version Number field 
for IPv5 contained the value 6. Now you know. 
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So what did happen to IPv1, IPv2 and IPv3? Well, TCP went through three versions (including all the 
functionality of IP) before IP was split out into a separate protocol in RFC 791. So, IP began its 
independent existence at version 4 (kind of like Windows NT starting life at version 3.1).  
 
No protocols called IPv1, IPv2, IPv3 or IPv5 ever existed. IPv4 was the first release of the Internet 
Protocol (1G Internet), and IPv6 is the second release (2G Internet). Hence my name for the Internet 
based on it: the Second Internet. 
 
There have been rumors about an IPv9 protocol in China. A Venture Capital firm in Hong Kong actually 
asked me if China was already that far ahead of the rest of the world, and shouldn’t we be supporting 
their version? It seems some researcher in a university there published a paper on an “IPv9”, but it was 
never implemented, and wasn’t a replacement for IPv4 (let alone IPv6) anyway. It was a way to use 10 
digit decimal phone numbers in a modified DNS implementation instead of alphanumeric domain 
names, for all nodes on the Internet.  I guess if you speak only Chinese, a 10 digit numeric string may 
seem easier to use than an English domain name using Latin characters. Fortunately for Chinese 
speakers, we will soon have Internationalized Domain Names in Chinese and other languages.  
 
Actually, there is a real RFC about IPv9, which you might enjoy reading. See RFC 1606, “A Historical 
Perspective On The Usage of IP Version 9”, April 1, 1994. This has nothing to do with the Chinese IPv9, 
and is much funnier. This RFC is a network engineer’s equivalent to an integrated circuit data sheet I 
once saw, concerning a logic gate (circuit) called a “maybe gate”. This gate is similar to “or gates”, “and 
gates” and “nand gates”. There were two inputs to the maybe gate, each of which could be logic 0 or 
logic 1. The output was “maybe 1, maybe 0”, it all depended on how the gate felt right then. Please 
notice the release date of RFC 1606. 
 
 
1.8 – Let’s Eliminate the Middle Man 
 
One of the things that the Second Internet does better than anything is disintermediation. Just as e-mail 
eliminated the need for a central Post Office, the features of the Second Internet will eliminate the need 
for many existing centralized organizations and services. With a real decentralized end-to-end 
connectivity model, there is no need for two users to connect to a central server (such as AOL’s Instant 
Messenger Service) in order to chat with each other. They will simply connect directly to each other. 
That’s hard to do today, because of NAT. 
 
The restoration of the original (pre-NAT) flat address space, and the plethora of addresses will allow 
anyone or anything to connect directly to anyone or anything on the Second Internet. It’s going to be a 
very different online world. Many business models will go by the way, and many new ones will explode 
on the scene and make some new entrepreneurs very wealthy. Someone will need to provide 
centralized directory and presence servers that will let people locate each other, so that they can 
connect directly to each other. 
 
A number of years ago, a gentleman in my previous home town of Atlanta, Georgia (home to Coka-Cola, 
and UPS) had a small UHF TV station (WTBS, Channel 17) that mostly broadcast old movies and Atlanta 
Braves baseball, both of which he loved. He was one of the first people to realize that he could relay his 
TV station’s signal through a transponder on a geo-stationary satellite (“that’s a really tall broadcast 
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antenna”), and the rest is history. The man was Ted Turner, and his bright idea created the Turner 
Broadcast System (TBS), which along the way produced CNN, CNN Headline News, Cartoon Network, 
Turner Network Television (TNT), and many other things. His success allowed him to buy the Braves 
baseball team, and the entire film library of MGM (not to mention a famous starlet wife, sometimes also 
called “Hanoi Jane”). When he began relaying his Channel 17 signal, his viewership went from maybe 
10,000 to 10,000,000 virtually overnight. That was a world changing insight. 
 
Some bright entrepreneur is going to realize that global multicast IPTV is the same kind of opportunity. 
Wonder what he (or she) will create with the wealth thereby generated? What country will they be 
from? I’m betting India. 
 
 I did warn you that this is revolutionary, highly disruptive technology. However, with great disruption 
comes great opportunity. 
 
 
1.9 – Why Am I the One Writing This Book? Just Who Do I Think I Am, Anyway? 
 
I have been personally involved in helping create and deploy the Second Internet for many years. I’ve 
spoken at IPv6 summits around the world, including Beijing, Seoul, Kuala Lumpur, Manila, Taipei, 
Potsdam and Washington D.C. I have so far invested 8 years of my life and about $7M of my own 
personal funds (which came from selling a previous Internet based venture called CipherTrust where I 
was cofounder). I have relocated myself and my family from the United States to Asia to be where the 
action is (in these early days, the Second Internet really is somewhat of an “Asian thing”, but soon 
enough it will be worldwide). I’ve built a company that now has six years of experience, deep pools of 
expertise, and already three critical products needed to build networks for the Second Internet (with 
two more products underway). We have recently been certified as one of the six official IPv6 Ready 
testing centers in the world. This is by far the biggest opportunity I’ve seen in my 37 years in IT. 
 
Now, have I gotten your attention? Great – now let’s explore just what the Second Internet is all about. 
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Chapter 2 – History of Computer Networks Up to TCP/IPv4 
 

A long time ago (in a Galaxy not too far away), people started connecting computers together. A few 
brave souls tried to do this with dial-up 1200 baud modems over phone lines. Pioneers brought up 
Bulletin Board Systems (message boards that one person at a time could dial into and exchange short 
messages, and later small files, with each other). I brought up the 8th BBS in the world, in Atlanta, about 
1977, using code from the original CBBS in Chicago (created by Ward Christensen and Randy Suess) and 
a modem donated by my friend Dennis Hayes (of Hayes Microcomputer Products). Later there were 
thousands of online Bulletin Board Systems, all over the world. Soon there followed commercial 
“information utilities” like CompuServe and The Source, which were like giant BBS’es with many more 
features. Tens of thousands of users could connect to these simultaneously. It was like the first crude 
approximation to the Internet of today, based on circuit switched connections over telephone lines. 
Everything was text oriented (non-graphical) and very slow. 1200 bits/sec was typical at first, although 
later modems with speeds of 2400 bits/sec, 9600 bits/sec, 14.4KB/sec, 28.8KB/sec and finally 56KB/sec 
were developed and came into widespread use. Later these modems were primarily used to dial into an 
ISP to connect to the Internet, and some people are still using them this way. 
 
 
2.1 – Real Computer Networking 
 
While home computer users were playing around with modems and bulletin board systems, the big 
computer companies were working on ways to connect “real” computers at higher speeds, and with 
much more complex software.  
 
 
2.1.1 – Ethernet and Token Ring 
 
Much of this was based on Ethernet, which was created by a team at Xerox PARC led by Robert Metcalf 
between 1973 and 1975. The first specification (1976) ran at 3 Mbit/sec. Metcalf left PARC in 1979 to 
create 3com and create commercial products based on Ethernet. Working together with DEC, Intel and 
Xerox (hence the “DIX” standard), 3com released the first commercial products running at 10 MBit/sec. 
Ethernet was standardized in 1980 by the IEEE (Institute for Electrical and Electronic Engineers) as 802.3. 
Early versions ran on 10base2 (a small diameter coax cable) or 10base5 (a larger diameter coax cable). 
These used a “multidrop” architecture, which was subject to many reliability problems. With the 
introduction of the simpler to deploy and manage “unshielded twisted pair” (actually 4 pair, or 8 wire) 
cables (known as 10baseT, mid 1980s), and star architectures using “hubs” and later “switches”, local 
area networks really took off. Today, virtually all Ethernet networks use twisted pair copper wire (up to 
gigabit speed) or fiber optic cable (for higher speed and longer runs). I helped deploy a 10base2 coax 
Ethernet network in Hong Kong in 1993. Trust me, twisted pair cabling is a lot easier. 
 
IBM for many years pushed a competing physical layer network standard called “Token Ring” (later 
standardized as IEEE 802.5). Token Ring was available in 4 Mbit/sec and 16 Mbit/sec versions. Later, a 
100 Mbit/sec version was created, but by then Ethernet dominated the market and Token Ring quietly 
disappeared. FDDI (Fiber Distributed Data Interface) still in use today is based on the token ring concept. 
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2.1.2 – Network Software 
 
Network software quickly evolved once Ethernet and Token Ring hardware became available. One of the 
main goals was to “hide” the differences between various hardware level technologies (Ethernet, Token 
Ring, Wireless, etc) from the higher level software. This led to the multiple layers of the network stack. 
The bottom layer is very hardware specific, and the upper layers introduce more and more hardware 
independence, so that applications can be written once, and run over any hardware transport. 
 
Digital Equipment was one of the first to create networking software with DECNET (1975). IBM had 
System Network Architecture (SNA, 1974). Xerox created the PARC Universal Packet protocol (PUP, late 
70’s) which eventually evolved into Xerox Network Services (XNS, early 80’s) at PARC (Palo Alto Research 
Center). XNS was the basis for the later Banyan Vines Network OS, based on “Vines IP” (similar to but 
incompatible with IPv4 from TCP/IP). Banyan Vines included the first network directory service, called 
“StreetTalk”. XNS also was the basis for Novell Netware (IPX/SPX, 1983), which eventually added its own 
Netware Directory Services (NDS, 1993). NetWare did not fully support TCP/IP until 1998, which allowed 
Microsoft (who supported TCP/IP first) to take over leadership in personal computing networks. 
 
Microsoft worked with 3com to create their own network OS, called LAN Manager. It used SMB (Server 
Message Block) protocol on top of either NBF (NetBIOS Frames Protocol) or modified XNS. In 1990, 
Microsoft added support for TCP/IP as an alternate protocol (LAN Manager 2.0). With the release of 
Windows NT Advanced Server in 1993, Microsoft finally phased out LAN Manager. By Windows NT v3.51 
(May 1995) Microsoft encouraged users to deploy only TCP/IP (four years ahead of Novell’s support for 
TCP/IP). This lead time allowed Microsoft to take over leadership in personal computer networks from 
Novell. Microsoft introduced their version of network directory services in Windows Server 2000, now 
known as Active Directory. The SMB protocol still survives as Microsoft’s “File and Printer Sharing” 
protocol (now layered on TCP/IP, instead of NetBIOS or XNS). An Open Source implementation of this is 
available as SAMBA.  
 
 
2.2 – The Beginnings of the Internet (ARPANET) 
 
While all this commercial activity was going on, the U.S. Military (at their Advanced Research Projects 
Agency, or ARPA), with the help of Bolt, Beranek and Newman (BBN) and Mitre, were designing a new, 
decentralized communication system based on packet switching. Existing communication systems 
(telephone, radio, etc) were centralized, and hence subject to being completely disabled due to the 
failure or loss of a few central nodes. Packet switched networks were highly decentralized, and had a 
fascinating new property, which is that you could lose large parts of a network, and the remaining parts 
would still work (assuming at least some links connected the working parts). 
 
The first network protocol developed as part of ARPANET was called the 1822 protocol (named after 
BBN report 1822), and was implemented by a Network Control Program, so the protocol was often 
referred to as NCP.  The first e-mail was sent over NCP in 1971, and the File Transfer Protocol followed 
in 1973. On Jan 1, 1983 (“flag day”), NCP was turned off officially, leaving only TCP/IPv4 on the Internet. 
You might think of the NCP era as phase 1 of the First Internet, with the IPv4 era being phase 2 of the 
First Internet. Otherwise the new Internet based on TCP/IPv6 will be THIRD Internet. Fortunately, there 
is no need for a flag day to go from TCP/IPv4 to TCP/IPv6, as they can co-exist (and probably will for 
perhaps 5 to 10 years). 
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In May 1974, Vint Cerf and Bob Kahn released the paper “A Protocol for Packet Network 
Interconnection”. This described a monolithic protocol called TCP that combined the features of both 
modern TCP and IPv4. Later John Postel was instrumental in splitting apart TCP and IP as we know them 
today. Vint Cerf is today considered the “father of TCP/IP”, and is now the IPv6 Evangelist at Google. He 
understands very well the problems with the current implementation of TCP/IPv4 (and why these things 
were done). He advocates for users to migrate to TCP/IPv6, which restores his original concept of a flat 
address space (no NAT), where any node can connect directly to any other node. 
 
If you’d like to read about the creation of the First Internet, I recommend the book “Where Wizards Stay 
Up Late: The Origins of the Internet”, by Katie Hafner and Matthew Lyon. It is of considerable interest to 
those of us creating the Second Internet, as we facing some of the same problems they did. Only this 
time around, we’ve got over a billion legacy users (and staggering investments in hardware and 
software) to worry about. On the other hand, we’ve got three decades of operational experience with 
TCP/IPv4 to draw upon. 
 
Higher level software protocols were built on top of the TCP and IP layers, called “application protocols”, 
such as SMTP (for e-mail), FTP (for file transfer) and Telnet (for terminal emulation) and more recently 
HTTP (used in the Web), and SIP & RTP (used in VoIP). The resulting suite of protocols became known for 
its two most important protocols, TCP and IP, or TCP/IP. 
 
 
2.2.1 – UNIX  
 
About this time (1973), Bell Labs (a research group within AT&T) created an interesting new operating 
system (called PWB-UNIX) and a new language (in which UNIX was written) called “C”. Because of a 
1958 consent decree, AT&T as a regulated monopoly was not allowed to market or sell UNIX 
commercially. They licensed it (complete with source code) to a number of universities. One of these 
was the University of California at Berkeley (also famous for being the center of communist student 
activities at the time). The team at UCB extended UNIX in several very important ways such as adding 
Virtual Memory. They also integrated the new network protocol from ARPA as the first commercial 
implementation of TCP/IP. The “Berkeley System Distribution” of UNIX became a main branch. Over 
time, they rewrote most of it and wanted to release it for free. AT&T sued them in court, and it seems 
most of the examples of “stolen code” AT&T cited had actually been written at UCB. The judge ruled 
that if UCB rewrote the remaining 10% or so (so there was zero original AT&T code), they could release 
that. That rewrite became 386BSD, the starting point for FreeBSD (the first Open Source operating 
system). Interestingly enough, FreeBSD was chosen by Japan’s KAME project to deploy the first version 
(the “reference” implementation) of an IPv6 stack, in an eerie echo of BSD UNIX’s choice for the first 
commercial TCP/IPv4 implementation. 
 
UNIX and TCP/IP became very popular on college campuses, and with high end workstation vendors, 
such as Sun, Silicon Graphics and Intergraph. Personal computers were not powerful enough to run 
UNIX until the Intel 386, at which point UCB ported the BSD version to the 386. However, as 
documented above, most personal computer networking was already moving to TCP/IPv4. 
 
 
2.2.2 – Open System Interconnect (OSI) 



26 

 

 
While all of this was going on, ISO (the International Organization for Standardization) in Europe was 
creating a very thoroughly engineered suite of network protocols called Open System Interconnect 
(OSI), or more formally, X.200 (July 1994). This is where the famous “seven layer” network model comes 
from (TCP/IP is really a “four layer” model, which has caused no end of confusion among young network 
engineers). At one point the U.S. government decided to officially adopt OSI for its networking (this was 
called GOSIP, or Government Open Systems Interconnection Profile, defined in FIPS 146-1, 1990). 
Unfortunately, OSI was really more of an academic specification, not a real working network system, like 
TCP/IP was. After many years, GOSIP was finally abandoned and TCP/IPv4 was deployed, but GOSIP’s 
legacy has hindered the adoption of IPv6 in the U.S. (“here we go again – GOSIP Part 2!”). X.400 e-Mail 
and X.500 directory systems were built on top of OSI, and will not run on TCP/IP without substantial 
compatibility layers. One small part of X.500 (called X.509) was the source of digital certificates and 
Public Key Infrastructure, still used today. LDAP was an attempt to create an X.500-like directory system 
for TCP/IP based networks. That’s about all that is left of the mighty OSI effort today, outside of 
Computer Science textbooks and Cisco Press books. 
 
 
2.2.3 – E-Mail Standardization 
 
By this time, essentially all computer vendors had standardized on TCP/IP, but there were still a lot of 
competing standards for e-Mail, including Microsoft’s MS-Mail, Lotus’s cc:Mail, and MCI Mail. The 
Internet folks used a much simpler e-mail standard called SMTP (Simple Mail Transfer Protocol). It first 
became the connecting backbone between various e-Mail products (everyone had their e-Mail to SMTP 
gateways, so users could exchange messages across organizations). Soon, everyone started using SMTP 
(together with POP3 and later IMAP) all the way to the end-user. Today virtually all e-Mail worldwide is 
based on SMTP and TCP/IP. 
 
 
2.2.4 – Evolution of the World Wide Web 
 
Several other Internet applications evolved, including WAIS (Wide Area Information Server, for storing 
and retrieving documents) and Archie (the very first search engine). In turn, these efforts were merged 
with the idea of HyperText (documents with multi-level links) and evolved into HTML (HyperText 
Markup Language) and HTTP (HyperText Transfer Protocol). The World Wide Web was off and running. 
The first web browser and web server were created at the National Center for Supercomputing 
Applications (NCSA) at the University of Illinois, Urbana-Champaign campus. The people that created 
those software projects (primarily Marc Andreessen and Eric Bina) were soon hired by Jim Clark, one of 
the founders of Silicon Graphics, to start NetScape, one of the most successful companies in the First 
Internet. They created a new and more powerful web server (NetScape Web Server) and web browser 
(NetScape Navigator). Interestingly enough, the original browser created by Andreessen at NCSA later 
became the starting point for Microsoft’s Internet Explorer web browser. 
 
 
2.3 – And That Brings Us Up to Today 
 
That pretty much brings us up to the present day where the entire world has standardized on TCP/IPv4 
protocols for both LANs (Local Area Networks) and WANs (Wide Area Networks). MPLS is not a 
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competitor to TCP/IP, it is one more alternative at the Link Layer, peer to Ethernet and WiFi. More and 
more companies and organizations built TCP/IP networks and connected them together to create the 
Internet. Major telcos provided “backbone” WAN connections and dial-up access service (soon known as 
ISPs or Internet Service Providers). As the number of users (and the amount of traffic) on the Internet 
grew enormously, Internet Exchange Points were created around the world. These are places where ISPs 
connect to each other so that traffic from a user of any provider can reach users of any other provider, 
worldwide. 
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Chapter 3 – Review of TCP/IPv4 
 
This chapter is a brief review of TCP/IPv4, the foundation of the First Internet. Its purpose is to help you 
understand what is new and different in TCP/IPv6. It is not intended to be comprehensive. There are 
many great books listed in the bibliography if you wish to understand TCP/IPv4 at a deeper level. The 
reason it is relevant is because the design of IPv6 is based heavily on that of IPv4. First, IPv4 can be 
considered one of the great achievements in IT history, based on its worldwide success, so it was a good 
model to copy from. Second, there were several attempts to do a new design “from the ground up” with 
IPv6 (a “complete rewrite”). These involved really painful migration and interoperability issues. You 
need to understand what the strengths and weaknesses of IPv4 are to see why IPv6 evolved the way it 
did. You can think of IPv6 as “IPv4 on steroids”, which takes into account the radical differences in the 
way we do networking today, and fixing problems that were encountered in the first 27 years of the 
Internet, as network bandwidth and number of nodes increased exponentially. We are doing things over 
networks today than no one could have foreseen a quarter of a century ago, no matter how visionary 
they were. 
 
 
3.1 – Network Hardware 
 
There are many types of hardware devices used to construct an Ethernet network running TCP/IP 
protocols. These include nodes, NICs, cables, hubs, switches, routers and firewalls. 
 
A node (sometimes called a host) is a device (usually a computer) that can do processing and has some 
kind of physical connection (wired or wireless) to a network. Examples of nodes are: desktop computers, 
notebook computers, netbooks, smart phones, smart switches, routers, network printers, network 
aware appliances, and so on. A node could be as simple as a temperature sensor, with no display and no 
keyboard, just a connection to a network. It could possibly have a management interface accessed via 
the network (e.g. with Telnet, SSH or web). All nodes on a network must have at least one IP address 
(per interface). If a node has multiple interfaces connected to different networks, and the ability to 
forward packets between them, then it is called a gateway. Routers and firewalls are special types of 
gateways that can forward packets across networks and or control traffic in various ways. Gateways 
make it possible to build internetworks. They are described in more detail under IPv4 Routing in this 
chapter. 
 
A NIC (or Network Interface Card) is the physical interface that connects a node to a network. It may also 
be called an Ethernet adapter. It should have a female RJ-45 connector on it (or possibly coax or fiber 
optic connector). It could be an actual add-in PCI card. It could be integrated on the device’s 
motherboard. It could also be a something that makes a wireless connection to a network, using Wi-Fi, 
WiMAX or other standard.  Typically all NICs have a globally unique, hard-wired MAC address (48 bits 
long, assigned by the manufacturer). A node can have one or more NICs (also called interfaces). Each 
interface can be assigned one or more IP addresses, and various other relevant network configuration 
items, such as the address of the default gateway and the addresses of the DNS servers. 
 
Network cables today are typically unshielded twisted pair (UTP) cables that actually have four pairs of 
plastic coated wires, with each pair forming a twisted coil. They have RJ-45 male connectors on each 
end. They could also be fiber optic cables for very high speed or long run connections. Often today, 
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professional contractors install UTP cables through the walls, and bring them together at a central 
location (sometimes called the wiring closet) where they are connected together to form a star network. 
Cables typically are limited to 100 meters or less in length, but the maximum acceptable length is a 
factor of several things, such as network speed and cable design. Modern cables rated as “CAT5” or 
“CAT5E” are good up to 100 Mbit/sec, while cables rated as “CAT6” are good up to a gigabit. Above that 
speed, you should be using fiber optic cables. It is also possible for twisted pair cables to be shielded if 
required to prevent interference from (or with) other devices. 
 
A network hub is a device that connects multiple cables together so that any packet transmitted by a 
node connected to that hub is replicated to all the other nodes connected to the hub. It typically has a 
bunch of female RJ-45 connectors in parallel. In effect it ties together the network cables plugged into it 
into a star network. Hubs have a speed rating, based on what speed Ethernet they support. Older hubs 
might be only 10 Mbit/sec. More recent ones might be 10/100, which means they support both 10 
Mbit/sec and 100 Mbit/sec (or “Fast Ethernet”). If you have 5 nodes (A,B,C,D and E) connected together 
with a hub, and node B sends a packet to node D, all nodes, including A, C and E will see the traffic. The 
nodes not involved in the transaction will typically just ignore it. This dropping of packets not addressed 
to a node is often done by the hardware in the NIC, so that it never interrupts the software driver. Many 
NICs have the ability to be configured in promiscuous mode. When in this mode, they will accept packets 
(and make them available to any network application) whether those packets are addressed to this node 
or not. If this mode is selected, the dropping of packets not addressed to you must be done in software. 
However sometime you want to see all traffic on the subnet. For instance, this would be useful with 
Intrusion Detection, for diagnostic troubleshooting, or for collecting network statistics. Hubs come in 
various sizes, from 4 ports up to 48 ports, and can even be coupled with other hubs to make large 
network “backbones”. You can also have a hierarchy of hubs, where several hubs distributed around a 
company actually connect in to a larger (and typically faster) central hub. Actually, hubs are quite rare 
today, most such devices today are actually switches. 
 
A network switch is similar to a network hub, but has some control logic in it that limits traffic to go out 
only ports that have nodes that are involved in a transmission. Again, say you have a switch with cables 
going to nodes A,B,C,D and E. If B sends a packet to D, that packet will not be seen on the ports to which 
A, C and E are connected. This holds down excessive traffic that would normally just be dropped 
anyway, and can help prevent broadcast storms. It also provides a small degree of privacy, even if 
someone enables their NIC in promiscuous mode. In order to do this, switches must snoop on the MAC 
addresses of packets and maintain tables of MAC addresses. Most switches are oblivious to IP addresses 
– they work only with MAC addresses. Because of this, they are IP version agnostic. This means they will 
carry IPv4 or IPv6 traffic (or even other kinds of Ethernet traffic), so long as it uses MAC addresses. 
 
If you are using a switch, but one of your connected nodes really does want to see all traffic on a 
network segment, some switches have a mirror port function that will still allow all traffic from the 
entire switch to be copied to one port, to which you connect the node that wants to monitor all traffic. 
Typically this must be configured, which requires a management interface of some kind. If you 
configured all ports on a switch to act as “mirror ports”, you would effectively have a hub. Like hubs, 
switches come in various speeds, from 10 Mbit/sec up to 1000 Mbit/sec (Gigabit). They also come in 
sizes from 4 ports up to 48 ports, and better ones can be “stacked” (linked together) to build larger 
network backbones. Lower end (cheaper) switches may have few if any configuration options, and may 
not even have a user interface. Smart (or managed) switches typically have a sophisticated GUI 
management interface (accessible via the network, usually over HTTP) that allows you to configure 
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various things and/or monitor traffic. They also typically include support for monitoring or control using 
SNMP (Simple Network Monitoring Protocol). Very advanced switches have the ability to configure 
VLANs (Virtual LANs), which allow you to effectively create multiple sub-switches that are not connected 
together. 
 
 
3.2 – RFCs: The Internet Standards Process 
 
Anyone studying the Internet, or developing applications for it, must understand the RFC system. RFC 
stands for Request For Comments. These are the documents that define the Internet Protocol Suite (the 
official name for TCP/IP) and many related topics. Anyone can submit an RFC. Ones that are part of the 
Standards Track are usually produced by IETF (Internet Engineering Task Force) working groups. Anyone 
can start or participate in a working group. Submitted RFCs begin life as an Internet Draft, each of which 
has a lifespan of six months or less. Most drafts go through considerable peer review, and possibly 
several revisions, before they are approved, are issued an official number (e.g. 793) and become part of 
the official RFC collection. There are other kinds of documents in addition to the Standards Track, 
including information memos (FYI), humor (primarily ones issued on April 1) and even one obituary, for 
Jon Postel, the first RFC Editor and initial allocator of IP addresses, RFC 2468, “I Remember IANA”, 
October 1998. There is even an RFC about RFCs, RFC 2026, “The Internet Standards Process, Revision 3”, 
October 1996. That is a good place to start if you really want to learn how to read them. 
 
The Internet standards process is quite different from the standards process of ISO (The International 
Standards Organization) that created the OSI network specification. ISO typically develops large, 
complex standards with multiple 4 year cycles, with hundreds of engineers and much political wrangling. 
This was adequate for creating the standards for the worldwide telephony system, but is far too slow 
and hidebound for something as freewheeling and rapidly evolving as the Internet. The unique 
standards process of the IETF is one of the main reasons that TCP/IP is now the dominant networking 
standard worldwide. By the time OSI was specified, TCP/IP was already created, deployed, and being 
revised and expanded. OSI never knew what hit it. 
 
Learning to read RFCs is an acquired skill, one that anyone serious about understanding the Internet, 
and most developers creating things for it, should master. There are certain “terms of art”, like the 
usage of MUST, SHOULD, MAY and NOT RECOMMENDED that are precisely defined and used. As an 
example, the IPv6 Ready Silver (Phase 1) tests examine only the MUST items from relevant RFCs, but the 
IPv6 Ready Gold (Phase 2) tests also examine all of the SHOULD items. 
 
RFCs are readily available to anyone for free. Compare this to the ISO standards, which can cost over 
$1000 for a complete set of “fascicles” for something like X.500. Today you can obtain RFCs easily in 
various formats by use of a search engine such as Google or Yahoo. The “official” source is the URL: 
 
 http://www.rfc-editor.org/rfc/rfcXXXX.txt (where XXXX is the RFC number) 
 
There is also an official RFC search page, where you can search for phrases (like “TCP”) in different 
tracks, such as RFC, STD, BCP or FYI, or all tracks. You can retrieve the ASCII or PDF versions. It is at: 
 
 https://www.rfc-editor.org/rfcsearch.html 
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There are over 5500 RFCs today. I have included many references to the relevant RFCs in this book. If 
you want to see all the gory details on any subject, go right to the source and read it. You may find it 
somewhat tough going until you learn to read “RFC-ese”. A number of books on Internet technology are 
either just a collection of RFCs, or RFCs make up a large part of the content. There is no reason today to 
do that – anyone can download all the RFCs you want, and have them in soft (searchable) form. 
 
Most of the topics covered in this book also have considerable coverage on the Internet outside of the 
RFCs, such as in Wikipedia. Again, if you want to drill deeper in any of these topics, crank up your 
favorite search engine and have at it. The information is out there. What I’ve done is to try to collect 
together the essential information in a logical sequence, with a lot of explanations and examples, plus all 
the references you need to drill as deep as you like. I taught cryptography and Public Key Infrastructure 
for VeriSign for two years, so I have a lot of experience trying to explain complex technical concepts in 
ways that reasonably intelligent people can easily follow. Hopefully you will find my efforts worthwhile. 
 
 
3.3 – TCP/IPv4  
 
The software that made the First Internet (and virtually all Local Area Networks) possible has actually 
been around for quite some time. It is actually a suite (family) of protocols. The core protocols of this 
suite are TCP (the Transmission Control Protocol) and IP (Internet Protocol), which gave it its common 
name, TCP/IP.  Its official name is The Internet Protocol Suite. 
 
TCP was first defined officially in RFC 675, “Specification of Internet Transmission Control Program”, 
December 1974. The protocol described in this document does not look much like the current TCP, and 
in fact, the Internet Protocol did not even exist at the time. Jon Postel was responsible for splitting the 
functionality described in RFC 675 into two separate protocols, (the new) TCP and IP. RFC 675 is largely 
of historical interest now. The modern version of TCP was defined in RFC 795, “Transmission Control 
Protocol – DARPA Internet Program Protocol Specification”, September 1981 (seven years later). It was 
later updated by RFC 1122, “Requirements for Internet Hosts – Communication Layers” October 1989, 
which covers the link layer, IP layer and transport layer. It was also updated by RFC 3168, “The Addition 
of Explicit Congestion Notification (ECN) to IP”, September 2001, which adds ECN to TCP and IP. 
 
Both of these core protocols, and many others, will be covered in considerable detail in the rest of this 
chapter. 
 
 
3.3.1 – Four Layer TCP/IPv4 Architectural Model 
 
Unlike the OSI network stack, which really does have seven layers, the DoD network model has four 
layers, as shown below: 
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Figure 3.3-a: Four Layer TCP/IPv4 Model 
 
 
It just confuses the issue to try to figure out which of the seven OSI layers the layers of TCP/IP fit into. It 
is simply not applicable. It’s like trying to figure out what color “sweet” is. The OSI seven layer model did 
not even exist when TCP/IP was defined. Unfortunately, many people use terms like “layer 2” switches 
versus “layer 3” switches. These refer to the OSI model. Books from Cisco Press are particularly adamant 
about using OSI terminology. Unfortunately hardly anyone is using actual OSI networks today. In this 
book we will try to consistently use the four layer model terminology, while referring to the OSI 
terminology when necessary for you to relate the topic to actual products or other books. 
 
The Application Layer implements the protocols most people are familiar with (e.g. HTTP). The software 
routines for these are typically contained in application programs such as browsers or web servers that 
make “system calls” to subroutines (or “functions” in C terminology) in the “socket API” (an API is an 
Application Program Interface, or a collection of related subroutines, typically supplied with the 
operating system or C programming language compiler). The application code creates outgoing data 
streams, and then calls routines in the API to actually send the data via TCP (Transmission Control 
Protocol) or UDP (User Datagram Protocol). Output to Transport Layer: [DATA] using IP addresses. 
 
The Transport Layer implements TCP (the Transmission Control Protocol) and UDP (the User Datagram 
Protocol). These routines are internal to the Socket API. They add a TCP or UDP packet header to the 
data passed down from the Application Layer, and then pass the data down to the Internet Layer for 
further processing. Output to Internet Layer: [TCP HDR[DATA]], using IP addresses. 
 
The Internet Layer implements IP (the Internet Protocol) and various other related protocols such as 
ICMP (which includes the “ping” function among other things). The IP routine takes the data passed 
down from the Transport Layer routines, adds an IP packet header onto it, then passes the now 
complete IPv4 packet down to routines in the Link Layer. Output to Link layer: [IP HDR[TCP HDR[DATA]]] 
using IP addresses. 
 
The Link Layer implements protocols such as ARP that convert IP addresses to MAC addresses. It also 
contains routines that actually read and write data (as fed down to it by routines in the Internet Layer) 
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onto the network wire, in compliance with Ethernet or other standards. Output to wire: Ethernet packet 
using MAC addresses (or the equivalent if other network hardware is used, such as Wi-Fi).  
 
Each layer “hides” the details (and/or hardware dependencies) from the higher layers. This is called 
“levels of abstraction”. An architect thinks in terms of abstractions such as roofs, walls, windows, etc. 
The next layer down (the builder) thinks in terms of abstractions such as bricks, glass, mortar, etc. Below 
the level of the builder, an industrial chemist thinks in terms of formulations of clay or silicon dioxide to 
create bricks and glass. If the architect tried to think at the chemical or atomic level, it would be very 
difficult to design a house. His job is made possible by using levels of abstraction. Network programming 
is analogous. If application programmers had to think in terms of writing bits to the actual hardware, 
things like web browsers would be almost impossible. Each network layer is created by specialists that 
understand things at their level, and lower layers can be treated as “black boxes” by people working at 
higher layers. 
 
Another important thing about network layers is that you can make major changes to one layer, without 
impacting the other layers much at all. The connections between layers are well defined, and don’t 
change (much). This provides a great deal of separation between the layers. In the case of IPv6, the 
Internet layer is almost completely redesigned internally, while the Link Layer and Transport Layer are 
not affected much at all (other than providing more bytes to store the larger IPv6 addresses). If your 
product is “IPv6 only”, that’s about the only change you would need to make to your application 
software (unless you display or allow entry of IP addresses). If your application is “dual stack” (can send 
and receive data over IPv4 or IPv6), then a few more changes are required in the application layer (e.g. 
to accept multiple IPv4 and IPv6 addresses from DNS and try connecting to one or more of them based 
on various factors, or to accept incoming connections over both IPv4 and IPv6). This makes it possible to 
migrate (or “port”) network software (created for IPv4) to IPv6 or even dual stack with a fairly minor 
effort. In comparison, changing network code written for TCP/IP to use OSI instead would probably 
involve a complete redesign and major recoding effort. 
 
 
3.3.2 – IPv4: The Internet Protocol, Version 4 
 
IPv4 is the foundation of TCP/IPv4 and accounts for many of its distinguishing characteristics, such as its 
32-bit address size, its addressing model, its packet header structure and routing. IPv4 was first defined 
in RFC 791 “Internet Protocol”, September 1981. 
 
The following standards are relevant to IPv4: 
 

 RFC 791, “Internet Protocol” , September 1981 (Standards Track) 

 RFC 792, “Internet Control Message Protocol”, September 1981 (Standards Track) 

 RFC 826, “An Ethernet Address Resolution Protocol”, November 1982 (Standards Track) 

 RFC 1256, “ICMP Router Discovery Messages”, September 1991 (Standards Track) 

 RFC 2390, “Inverse Address Resolution Protocol”, September 1998 (Standards Track) 

 RFC 2474, “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 
Headers”, December 1998 (Standards Track) 

 RFC 4650, “HMAC-Authenticated Diffie-Hellman for Multimedia Internet KEYing (MIKEY)”, 
September 2006 (Standards Track) 



34 

 

 RFC 4884, “Extended ICMP to Support Multi-Part Messages”, April 2007 (Standards Track) 

 RFC 4950, “ICMP Extensions for Multiprotocol Label Switching”, August 2007 (Standards Track) 

 RFC 5494, “IANA Allocation Guidelines for the Address Resolution Protocol (ARP)”, April 1009 
(Standards Track) 

 RFC 5735, “Special Use IPv4 Addresses”, January 2010 (Best Current Practices) 
 
 
3.3.2.1 – IPv4 Packet Header Structure 
 
So what are these packet headers mentioned above? In TCP/IPv4 packets, there is a TCP (or UDP) packet 
header, then an IPv4 packet header, then the packet data. Each header is a structured collection of data, 
including things such as the IPv4 address of the sending node, and the IPv4 address of the destination 
node. Why are we getting down to this level of detail? Because some of the big changes from IPv4 to 
IPv6 have to do with the new and improved IP packet header architecture in IPv6. In this chapter, we’ll 
cover the IPv4 packet header.  Here it is: 
 

 
Figure 3.3-b: IPv4 Packet Header 

 
The IP Version field (4 bits) contains the value 4, which in binary is “0100” (you’ll never guess what goes 
in the first 4 bits of an IPv6 packet header!).  
 
The Header Length field (4 bits) indicates how long the header is, in 32 bit “words”. The minimum value 
is “5” which would be 160 bits, or 20 bytes. The maximum length is 15, which would be 480 bits, or 60 
bytes. If you skip that number of words from the start of the packet, that is where the data starts (this is 
called the “offset” to the data). This will only ever be greater than 5 if there are options before the data 
part (which is not common). 
 
The Type of Service field (8 bits) is defined in RFC 2474, “Definition of the Differentiated Services Field 
(DS Field) in the IPv4 and IPv6 headers”, December 1998. This is used to implement a fairly simple QoS 
(Quality of Service). QoS involves management of bandwidth by protocol, by sender, or by recipient. For 
example, you might want to give your VoIP connections a higher priority than your video downloads, or 
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the traffic from your boss higher priority than your co-worker’s traffic. Without QoS, bandwidth is on a 
first-come-first served basis. 8 bits is not really enough to do a good job on QoS, and DiffServ is not 
widely implemented in current IPv4 networks. QoS is greatly improved in IPv6. 
 
The Total Length field (16 bits) contains the total length of the packet, including the packet header, in 
bytes. The minimum length is 20 (20 bytes of header plus 0 bytes of data), and the maximum is 65,535 
bytes (since only 16 bits are available to specify this). All network systems must handle packets of at 
least 576 bytes, but a more typical packet size is 1508 bytes. With IPv4, it is possible for some devices 
(like routers) to fragment packets (break them apart into multiple smaller packets) if required to get 
them through a part of the network that can’t handle packets that big. Packets that are fragmented 
must be reassembled at the other end. Fragmentation and reassembly is one of the messy parts of IPv4 
that got cleaned up a lot in IPv6. 
 
The Identification (Fragment ID) field (16 bits) identifies which fragment of a once larger packet this one 
is, to help in reassembling the fragmented packet later. In IPv6 packet fragmentation is not done by 
intermediate nodes, so all the header fields related to fragmentation are no longer needed. 
 
The next three bits are flags related to fragmentation. The first is reserved and must be zero (an April 
Fool’s RFC once defined this as the “evil” bit). The next bit is the DF (Don’t Fragment) flag.  If DF is set, 
the packet cannot be fragmented (so if such a packet reaches a part of the network that can’t handle 
one that big, that packet is dropped). The third bit is the MF (More Fragments) flag. If MF is set, there 
are more fragments to come. Unfragmented packets of course have the MF flag set to zero. 
 
The Fragment Offset field (13 bits) is used in reassembly of fragmented packets. It is measured in 8 byte 
blocks. The first fragment of a set has an offset of 0. If you had a 2500 byte packet, and were 
fragmenting it into chunks of 1020 bytes, you would have three fragments as follows: 
 
 Fragment ID MF Flag  Total Length Data Size  Offset 
 1  1  1020  1000  0 
 2  1  1020  1000  125 
 3  0  520  500  250 
 
The Time To Live (TTL) field (8 bits) is to prevent packets from being shuttled around indefinitely on a 
network. It was originally intended to be lifetime in seconds, but it has come to be implemented as “hop 
count”.  This means that every time a packet crosses a switch or router, the hop count is decremented 
by one. If it reaches zero, the packet is dropped. Typically if this happens, an ICMPv4 message (“time 
exceeded”) is returned to the packet sender. This mechanism is how the traceroute command works. Its 
primary purpose is to prevent looping (packets running around in circles). 
 
The Protocol field (8 bits) defines the type of data found in the data portion of the packet. Protocol 
numbers are not to be confused with ports. Some common protocol numbers are:  

 
1 ICMP Internet Control Message Protocol (RFC 792) 
6 TCP Transmission Control Protocol (RFC 793) 
17 UDP User Datagram Protocol (RFC 768) 
41 IPv6 IPv6 tunneled over IPv4 (RFC 2473) 
83 VINES Banyan Vines IP 
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89 OSPF Open Shortest Path First (RFC 1583) 
132 SCTP Streams Control Transmission Protocol 
 

The Header Checksum field (16 bits). The 16-bit one’s complement of the one’s complement sum of all 
16 bit words in the header. When computing, the checksum field itself is taken as zero. To validate the 
checksum, add all 16 bit words in the header together including the transmitted checksum. The result 
should be 0. If you get any other value, then at least one bit in the packet was corrupted. There are 
certain multiple bit errors that can cancel out, and hence bad packets can go undetected. Note that 
since the hop count (TTL) is decremented by one on each hop, the IP Header checksum must be 
recalculated at each hop. The IP Header Checksum was eliminated in IPv6. 
 
The Source Address field (32 bits) contains the IPv4 address of the sender (may be modified by NAT). 
 
The Destination Address field (32 bits) contains the IPv4 address of the recipient (may be modified by 
NAT in a reply packet). 
 
Options (0 to 40 bytes) Not often used. These are not relevant to this book. If you want the details, read 
the RFCs. 
 
Data – (variable number of bytes) The data part of the packet – not really part of the header. Not 
included in the IP Header checksum. The number of bytes in the data field is the value of ‘Total Length’, 
minus the value of ‘Header Length’. 
 
 
3.3.2.2 – IPv4 Addressing Model 
 
In IPv4, addresses are 32 bits in length. They are simply numbers from 0 to 4,294,967,295. For the 
convenience of humans, these numbers are typically represented in dotted decimal notation. This splits 
the 32 bit addresses into four 8-bit fields, and then represents each 8-bit field with a decimal number 
from 0 to 255. These decimal numbers cover all possible 8 bit binary patterns from 0000 0000 to 1111 
1111. The decimal numbers are separated by “dots” (“.”). Leading zeros can be eliminated. The 
following are all valid IPv4 addresses in dotted decimal: 
 
 123.45.67.89  A globally routable address 
 10.3.1.51  A private address 
 255.255.255.255 The broadcast address 
 127.0.0.1  The loopback address for IPv4 
 
IPv6 addresses use a simpler scheme I call coloned hex notation. If something similar were used with 
IPv4, the address 192.168.1.2 would look like c0:a0:1:2, and the subnet mask 255.255.255.240 would 
look like ff:ff:ff:f0. Hexadecimal is also called base 16. Hexadecimal is just like decimal, if you have 6 
extra fingers! Instead of the ten decimal digits 0,1,2,3,4,5,6,7,8 and 9, hexadecimal has 16 “digits”, 
which are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F. Both systems use “place value notation”, but decimal is 
based on powers of 10 (1, 10, 100, 1000, etc), while hexadecimal is based on powers of 16 (1, 16, 256, 
4096, etc). For example, 123 decimal is 1 x 100 + 2 x 10 + 3. 123 hexadecimal is 1 x 256 + 2 x 16 + 3. One 
of the advantages of hexadecimal is extremely simple conversion to and from binary. Each hexadecimal 
digit converts to (or from) exactly 4 binary digits (bits), from 0000, 0001, 0010, up to 1111. 
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Network Ports 
 
Each IP address on a network node has 65,536 ports associated with it (the port number is a 16 bit 
value, and 2 to the 16th is 65,536). Any of those ports can either be used to make an outgoing 
connection, or to accept incoming connections. There is a list of Well Known Ports which associates 
particular ports with certain protocols. For example, port 25 is associated with SMTP. There is nothing 
magical (or e-mail-ish) about port 25. SMTP will work just as well on any other port, e.g. 10025. Use of 
port 25 for SMTP is simply a convention that many people adopt. Such conventions make it easier to 
locate the SMTP server on a node you might not be familiar with. To be specific, ports are a Transport 
Layer thing, and there are really 65,536 TCP ports, and another 65,536 UDP ports for each address. 
ICMP, which is an Internet Layer thing, does not have any port(s) associated with it. 
 
When you deploy an Internet server (e.g. an SMTP server for sending and receiving e-mail), the software 
opens a socket (a programming abstraction) in listen mode on a particular port (in the case of SMTP, 
port 25). An e-mail client that wants to connect to it creates its own socket in connect mode, and tells it 
to connect to a particular IP address (that of the SMTP server) using a particular port (in this case 25). 
When the connection attempt reaches the server, the server detects the attempt, and accepts the 
connection (actually the port on the server that the connection is accepted on will be any available port, 
typically higher than 1024). A well written server would then make a clone of itself (this is called forking 
in UNIX-speak), then go back to listening for further connections, while its clone went ahead and 
processed the connection. When the processing is complete on a given connection, the sockets used 
would be closed (on both server and client), and the clone of the server will quietly commit suicide.  In 
theory you could have thousands of clones of the server all simultaneously handling e-mail connections 
on a single server (given sufficient memory and other resources). Busy web servers (like those at Google) 
often have many thousands of connections being processed at any given time (but never more than 
65,000 on a given interface – each connection uses up one port). 
 
In UNIX, ports with numbers under 1024 are special, and only software that has root privilege can use 
them. Most common Internet services use ports in that range. There are many Well Known Ports, but 
here are a few of the more common ones: 
 
 22 – SSH (Secure Shell) 
 25 – SMTP (client to server and server to server e-mail protocol) 
 53 – DNS (Domain Naming System) 
 80 – HTTP (world wide web) 
 110 – POP (server to client e-mail retrieval) 
 143 – IMAP (more modern server to client e-mail retrieval) 
 389 – LDAP (directory service) 
 443 – HTTPS (world wide web over SSL) 
 
  
3.3.2.3 – IPv4 Subnetting 
 
This leads us naturally into the topic of IPv4 subnetting. This is one of the more difficult areas of 
networking for people learning to work with IPv4. All addresses have two “parts”, the first part being the 
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address of the network (e.g. 192.168.0.0), and the second being the node within that network (0.0.2.5). 
These two parts can be split apart along some “bit boundary”. In this case, the address of the network is 
in the first 16 bits, and the node within network is in the last 16 bits. The addresses of all nodes in such a 
subnet share the same first 16 bits, but each has a unique last 16 bits. So, such a subnet might have 
nodes with addresses 192.168.2.5, 192.168.3.7 and 192.168.200.12, but not one with the address 
192.169.2.1. 
 
The subnet mask is used to split an IPv4 address into its two parts. In this case, the subnet mask is 
255.255.0.0. You do a Boolean “AND” function of the address with the subnet mask to get the address 
of the network, and a Boolean “AND” of the address with the one’s complement of the subnet mask (in 
this case 0.0.255.255) to get the node within subnet. This is difficult to visualize in dotted decimal. It is 
rather more obvious in binary. The “AND” function produces a 1 if both inputs are 1, else it produces a 
0. The “one’s complement” ( “NOT”) function changes each 0 to a 1, and each 1 to a 0. With the AND 
function, where there is a 1 in the mask, the corresponding bit of the address “flows through” to the 
result. Where there is a 0 in the mask, the corresponding bit of the address is blocked, or forced to the 
value 0. 
 
 Address (192.168.2.5):  1100 0000 1010 1000 0000 0010 0000 0101 
 Subnet Mask (255.255.0.0): 1111 1111 1111 1111 0000 0000 0000 0000 
 AND    --------------------------------------------------------- 
 Network Addr (192.168.0.0) 1100 0000 1010 1000 0000 0000 0000 0000 
 
 
 Address (192.168.2.5):  1100 0000 1010 1000 0000 0010 0000 0101 
 Comp. of  Mask (0.0.255.255): 0000 0000 0000 0000 1111 1111 1111 1111 
 AND    --------------------------------------------------------- 
 Network Addr (0.0.2.5)  0000 0000 0000 0000 0000 0010 0000 0101 
 
For subnet mask 255.0.0.0, the first 8 bits are network address, the last 24 are node within subnet. 
For subnet mask 255.255.0.0, the first 16 bits are network address, the last 16 are node within subnet. 
For subnet mask 255.255.255.0, the first 24 bits are network address, the last 8 are node within subnet. 
 
Subnetting was easy when the three IP address classes (A, B & C) were used. The first few bits of the 
address determined the subnet mask. If the first bit of the 32 bit address was “0”, then the address was 
Class A, and the subnet mask was 255.0.0.0. If the first two bits of the address were “10”, then the 
address was class B, hence the subnet mask for 255.255.0.0. If the first three bits of the address were 
“110”, then the address was class C, hence the subnet mask was 255.255.255.0. This could actually be 
done automatically, so no one worried about subnet masks. 
 
When CIDR was introduced, there were two consequences. First, the split between the two parts of the 
address could come at any bit boundary, not just after 8, 16 and 24 bits. Second, lots of small blocks (e.g. 
/22 blocks) could be carved out of bigger blocks anywhere in the address space (perhaps from an old 
Class A block, such as 7.x.x.x), so you could no longer determine the correct subnet mask by looking at 
the first few bits of an address. 
 
Let’s say your ISP, instead of giving you a Class C block, only gives you a “/28” block of real (routable) 
IPv4 addresses, which would be 16 real IPv4 addresses, e.g. 123.45.67.0 through 123.45.67.15. First, two 
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of these are not usable. 123.45.67.0 is the “network address”, and 123.45.67.15 is the “broadcast 
address”. That leaves 14 real addresses. So what is your subnet mask? If you check the above table of 
useful CIDR block sizes, a /28 subnet has a subnet mask of 255.255.255.240. In binary that is 1111 1111 
1111 1111 1111 1111 1111 0000. If you care to count the ones, you find that there are 28 of them 
(hence the name “/28”). However, by the old rules (first bit is a 0) these are really from a “Class A” block, 
so the automatically generated subnet mask would have been 255.255.255.0.  
 
Now, what if your organization really has 100 nodes that need IP addresses? How do you give each of 
them unique addresses if you only have 14 usable addresses to work with? That’s where Network 
Address Translation (NAT) comes in (covered in the next chapter). If you think CIDR made your life more 
“interesting”, wait until you see what NAT does to it! Getting rid of CIDR and NAT are one of the big wins 
in IPv6. In fact, you will find that the entire subject of subnets has become totally trivial. 
 
 
3.3.2.4 – MAC Addresses 
 
IPv4 addresses are not actually used at the lowest layer of the TCP/IPv4 network stack (the Link Layer). 
Each network hardware interface actually has a 48 bit “MAC address” burned into it by the 
manufacturer. The first 24 bits of this (called the “Organizationally Unique Identifier” or OUI) specify the 
manufacturer. The last 24 bits of this (called the “Network Interface Controller Specific” part) is assigned 
by each manufacturer, to be unique within a given OUI. This means that the entire 48 bit value is 
globally unique. For example, Dell Computer has a number of OUIs assigned to them by the IEEE, 
including 00-06-5B, 00-08-74 and 00-18-8B. If you encounter a NIC with a MAC address that has one of 
those sets of 24 bits, it was made by Dell Computer.  When you use the command “ipconfig /all” in 
Windows, you get a list of network configuration information for all of your interfaces (some of which 
are “virtual”). If you look for “Local Area Connection”, that is information about your main (or only) 
network connection to your LAN. Under that, you will see an item labeled “Physical Connection”, 
followed by 6 pairs of hex digits, separated by dashes. That is the MAC address of your Network 
Interface Card (NIC). Mine is 00-18-8B-78-DA-1A. This means my NIC was made by Dell (my whole 
computer was, but the MAC address doesn’t tell you that). Actually, since the NIC I’m using is on the 
motherboard (not an add-on PCI card), this does tell me the motherboard was made by Dell. 
 
Network switches come in two varieties. “Layer 2” switches (which I would call Link Layer switches) only 
work with MAC addresses. They don’t even “see” IP addresses. Hence “Layer 2” switches are IP version 
agnostic - they work equally well with IPv4 or IPv6, or a mixture of the two (dual stack). “Layer 3” 
switches (sometimes called “smart” switches) work with MAC addresses, but they also understand and 
can see IP addresses (these work at both the Link Layer and the Internet Layer, in TCP/IP-speak). They 
can do things like create VLANs (Virtual LANs) to segregate traffic based on IP addresses. An IPv4-only 
“layer 3 switch” cannot work with IPv6 traffic (or at least none of its “higher level” functions will affect 
IPv6 traffic). There are now a few dual-stack “layer 3” switches on the market, such as the SMC 8848M, 
which I happen to be running in my home network. I can even manage it over IPv6 (via web and SNMP), 
and create VLANs based on IPv6 addresses.   
 
Mapping From IPv4 Addresses to MAC Addresses 
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The software in the Application Layer, the Transport Layer, and the Internet Layer of the TCP/IPv4 stack 
think in terms of IPv4 addresses. But the Link Layer (and the hardware) thinks in terms of MAC 
addresses. How do IPv4 addresses get mapped onto MAC addresses?  
 
Address Resolution Protocol (ARP) 
 
There are two protocols in TCP/IPv4 (that don’t even exist in IPv6) called ARP (Address Resolution 
Protocol) and InARP (Inverse Address Resolution Protocol). These protocols live in the Link Layer. ARP 
maps IP addresses onto MAC addresses.  This is kind of like the mapping between FQDNs and IP 
addresses done in the Application Layer by DNS, but down in the Link Layer.  
 
ARP is defined in RFC 826, “An Ethernet Address Resolution Protocol”, November 1982. ARP operates 
only across the local link that a host is connected to. It does not cross routers. It is used to determine the 
necessary MAC addresses to get a packet from one node in a subnet to another node in the same 
subnet (which could be a “default gateway” node that knows how to relay it on further. But for the hop 
from the sender to the default gateway, it is the same problem as getting the packet to any other local 
node. When the sender goes to send a packet, if the recipient’s address is on the local link, an ARP 
request is done for the recipient’s address, and the packet is sent to the recipient. If the recipient’s 
address is not on the local link, an ARP request is done instead for the sender’s default gateway address, 
and the packet is sent to the default gateway node, which will then worry about forwarding it on 
towards the real recipient. 
 
Say Alice (one TCP/IPv4 node) want to send a packet to Bob (another TCP/IPv4 node) (on the local link). 
Assume Alice does not currently know Bob’s MAC address. Each machine has a table of IP addresses and 
MAC addresses (called the ARP table). At this time, there is no entry in that table with Bob’s IP address 
and MAC address. So, Alice first sends an Ethernet ARP packet to all machines on the local link 
(broadcast), with the following info: 
 

opcode = REQUEST 
hardware type = Ethernet, 
protocol = IPv4 
sender’s IP address = Alice’s IPv4 address (she knows her own IP address) 
sender’s MAC address = Alice’s MAC address (she knows her own MAC address) 
recipient’s IP address = Bob’s IPv4 address (she knows Bob’s IP address) 
recipient’s MAC address = ‘don’t care’ (all zeros) (she doesn’t know Bob’s MAC address yet) 

 
All machines on the local link will get the packet, but everyone other than Bob will ignore it (“not for me 
– TOSS!). Bob understands Ethernet hardware, and IPv4 protocol, and recognizes his own IPv4 address 
(it’s for ME!). He adds Alice’s IPv4 address and Alice’s MAC address into his MAC table (for future 
reference), then sends a response Ethernet ARP packet back to Alice (he now knows Alice’s MAC 
address), with the following info: 
 

opcode = RESPONSE 
hardware type = Ethernet 
protocol = IPv4 
sender’s IP address = Bob’s IPv4 address (he knows his own IP address) 
sender’s MAC address = Bob’s MAC address (he knows his own MAC address) 



41 

 

recipient’s IP address = Alice’s IPv4 address (from the request) 
recipient’s MAC address = Alice’s MAC address (from the request) 
 

Only Alice gets the response (this is not a broadcast – Bob knew who made the request and sent the 
response only to the requestor). Alice sees that this is a RESPONSE, and the sender’s address tells it who 
the response was from. Alice then adds Bob’s IP address and MAC address into her MAC table. Now that 
she knows how to send things to Bob, she goes ahead with sending the packet that she originally was 
trying to send. This process is called Address Resolution. Hence the name Address Resolution Protocol. 
 
The MAC table has expiration times (TTL), and when an entry becomes “stale” it will be discarded, and 
the next time a packet is sent to that address, a new fresh entry will be added to the MAC table. 
 
In Windows, you can view your ARP table at any time, in a DOS Window, with the command “arp –a”. 
The results might look something like this: 
 
C:\Users\lhughes.HUGHESNET>arp -a 

 

Interface: 172.20.2.1 --- 0xb 

  Internet Address      Physical Address      Type 

  172.20.0.1            00-1b-21-1d-c1-59     dynamic 

  172.20.0.11           00-17-a4-ec-11-9c     dynamic 

  172.20.0.12           00-e0-81-47-fa-ce     dynamic 

  172.20.0.13           00-15-f2-2e-b4-1c     dynamic 

  172.20.0.21           00-18-f3-2e-32-87     dynamic 

  172.20.0.88           00-14-fd-12-fa-5a     dynamic 

  172.20.1.6            00-1e-90-1e-5b-4f     dynamic 

  172.20.1.8            00-1e-65-97-de-e0     dynamic 

  172.20.1.9            00-15-f2-2e-b4-1c     dynamic 

  172.20.255.255        ff-ff-ff-ff-ff-ff     static 

  224.0.0.22            01-00-5e-00-00-16     static 

  224.0.0.252           01-00-5e-00-00-fc     static 

  224.111.140.122       01-00-5e-6f-8c-7a     static 

  226.196.145.70        01-00-5e-44-91-46     static 

  237.62.223.84         01-00-5e-3e-df-54     static 

  239.255.255.250       01-00-5e-7f-ff-fa     static 

 

 
Inverse ARP (InARP) 
 
There is another protocol called Inverse ARP (InARP) that maps MAC addresses onto IP addresses. This is 
needed only by a few network hardware devices (like ATM). It works almost exactly like ARP, except 
different opcodes are used and the sender sends the recipient’s MAC address (which it knows) but zero 
fills the recipient’s IP address (which it wants to know). The recipient recognizes its own MAC address 
and responds with the same information that it does to an ARP. The older RARP (Reverse ARP) protocol 
is now deprecated. 
 
 
3.3.3 – Types of IPv4 Packet Transmissions 
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The most common type of packet transmission is unicast. This is when one node (A) sends a packet to 
just one other node (B). A and B can be in the same local link, or halfway around the world, so long as 
routable IP addresses are used, and a routing path is available between A and B. It is still called unicast. 
 
Another kind of transmission is broadcast (covered in more detail below). Here a node can transmit a 
packet to all nodes in the local link. Usually any node not interested in a broadcast packet will just drop 
it. If the packet was an ICMP echo request (ping), all nodes on the local link might reply to it, which could 
cause a lot of excess traffic. 
 
There is another kind of transmission called anycast. Here a node can transmit a packet to a single node 
out of a set of some collection of nodes (e.g. the “nearest” DNS server). Usually only a single node will 
accept the transmission and reply to the sender. This mechanism is somewhat limited in IPv4, but works 
really well in IPv6. DNS anycast is used with the root DNS servers to allow multiple copies of each root 
server, to handle the load and minimize turnaround on root server requests. 
 
There is one more kind of transmission called multicast. Here one node can send a single stream of 
packets, such as a digitized radio program, and any number of recipient nodes can subscribe to that 
multicast and receive it. Usually listening is a passive act, no responses are sent to the sender. Typically 
the sender has no knowledge of which, or even how many nodes receiving the transmission. It is 
efficient because other nodes further along the network handle replication of the traffic to nodes 
beyond them. This is analogous to many radios receiving a transmission from a single radio transmitting 
station. This is covered in more detail below. This is supported in IPv4, but works far better in IPv6. 
 
 
3.3.3.1 – IPv4 Broadcast 
 
Any node can send a packet to a special IPv4 address (255.255.255.255) and all nodes on the local link 
will receive it. Usually, there is some kind of information in the packet that allows most nodes to realize 
that packet does not concern them (e.g. if broadcast packet contains a DHCPv4 message, all nodes that 
don’t have a DHCPv4 server will ignore it). This mechanism can help locate servers or solve other 
problems (like not yet having a valid IP address), but it can put unnecessary loads on all nodes that 
aren’t involved. It can also lead to broadcast storms, which involve massive amounts of useless traffic 
clogging or totally shutting down an IPv4 network. As an example, a “smurf attack” sends zillions of 
pings to the broadcast address with the request containing the spoofed address of the node under 
attack as the “source address” (who sent the message). All nodes on the local link “respond” to the poor 
node under attack, which amplifies the attack. There are certain kinds of misconfigurations or hardware 
failures in network switches that can cause broadcast storms as well. 
 
Packets sent to the broadcast address do not cross routers (or VLAN boundaries), so appropriate use of 
these can limit the extent of disruption due to excessive broadcasts or storms. The set of nodes that a 
broadcast will reach is called a broadcast domain.  
 
Broadcast is used in the DHCPv4 protocol, to allow a node to find and communicate with the DHCPv4 
server, before it even gets an address.  
 
Broadcast does not exist in IPv6, because it can be so trouble prone. Other mechanisms are used to 
locateDHCPv6 servers, or solve other problems for which broadcast may be used in IPv4. 
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3.3.3.2 – IPv4 Multicast 
 
Multicast allows a node to transmit a stream of data (usually as UDP datagrams) to one of a number of 
special “multicast” addresses. Any number of other nodes can subscribe to that address and receive the 
datagrams. As one example, this could be used to send “broadcast” (in the media sense) radio or 
television programs.  
 
Sites like YouTube, and services like “on-demand” television, use traditional unicast (one sender 
connecting to one recipient) transmissions to each user. This requires a great deal of bandwidth, and a 
powerful network infrastructure at the transmission site, especially if there are a large number of 
recipients (potentially millions). Multicast is necessary to bring costs and network bandwidth 
requirements low enough to make it competitive with media broadcast over satellite or cable systems. 
 
There are several mechanisms and protocols involved in IPv4 multicast: 
 

 An IP multicast group address (one of theIPv4  “Class D” addresses described above) 

 A sending node which can convert some kind of data such as audio and/or video into digital 
form, and transmit the resulting UDP packets to that multicast group address 

 A multicast distribution tree, where every router crossed supports multicast operation 

 A new protocol called IGMP (Internet Group Management Protocol) that allows clients to 
subscribe to a particular multicast transmission 

 Another new protocol called PIM (Protocol Independent Multicast) that sets up multicast 
distribution trees 

 Clients that can “subscribe” to specific multicast addresses (receive the data being transmitted 
by the sender) and process the received digital data into some kind of service, such as audio or 
video 

 
Assuming there is a multicast program available on a particular multicast address (e.g. 239.1.2.3) a 
consumer can use a multicast client application to extend the distribution tree associated with that 
address to reach to his computer. This corresponds to selecting a channel on a television. There may be 
multiple routers between the sender and this subscriber. All of those routers must support multicast, 
and be informed to replicate packets from that sender to that recipient. IGMP is used to subscribe to a 
specific multicast address, and PIM is used to inform all intervening routers to extend the distribution 
tree to this client. The multicast server does not need to know anything about the recipients, and 
normally does get any response from them. The creation of the distribution tree and subscriptions to 
particular multicast addresses are handled by the clients and intervening multicast routers, not by the 
multicast server. 
 
Unlike unicast routers, a multicast router does not need to know how to reach all possible distribution 
trees, only those for which it is passing traffic from a sender to a recipient. If there is no recipient 
subscribed to a given channel “downstream” from a router (from the sender to recipient), there is no 
need for it to replicate packets and forward them downstream. If a recipient downstream from that 
router subscribes to a particular address, then that router will start replicating incoming upstream 
packets from the multicast address and relay them downstream towards that recipient (or recipients). 
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This is called adding a “graft” onto the tree. If there are recipients downstream on a particular path from 
a multicast router, and the last one “tunes out”, then that router is informed to stop replicating packets 
along that path. This is called a “prune” of the distribution tree. It is possible that one subscriber “tuning 
out” could result in an entire chain of multicast routers being pruned, if there are no other subscribers 
on that subtree. 
 
Multicast is often used for services such as IPTV, including applications such as distance learning. Not all 
IPv4 routers support multicast and the related protocols, so IPv4 multicast works best in “walled 
garden” networks, for example within a single ISP’s network (e.g. Comcast subscriber accessing 
multicast content from Comcast). In such a situation it is possible to insure that all intervening routers 
support the necessary protocols (which are optional in IPv4). 
 
It is possible to build a fully IPv4 multicast compliant router using open source operating systems and an 
open source package called XORP (eXtensible Open Router Platform, at www.xorp.org). XORP was first 
developed for FreeBSD, but is available on Linux, OpenBSD, NetBSD and Mac OS X. The XORP technology 
and team has recently been transferred to a commercial startup backed by VCs (called XORP Inc). Many 
modern enterprise-class routers support IPv4 multicast, but not all do. Not many SOHO-class routers do. 
In IPv6, Multicast is an integral part of the standard, and support is mandatory in all compliant devices. It 
also works in a very different way, and is much more scalable. 
 
Internet Relay Chat (IRC) uses a different approach to multicast (not the standard multicast protocols), 
and creates a spanning tree across its overlay network to all nodes that subscribe to a given chat 
channel. Unlike multicast delivered media content, IRC is a two-way channel.  
 
Standards relevant to IPv4 Multicast include: 
 

 RFC 1112, “Host Extensions for IP multicasting”, August 1989 (Standards Track) 

 RFC 2236, “Internet Group Management Protocol, Version 2”, November 1997 (Standards Track) 

 RFC 2588, “IP Multicast and Firewalls”, May 1999 (Informational) 

 RFC 2908, “The Internet Multicast Address Allocation Architecture”, September 2000 
(Informational) 

 RFC 3376, “Internet Group Management Protocol, Version 3”, October 2002 (Standards Track) 

 RFC 3559, “Multicast Address Allocation MIB”, June 2003 (Standards Track) 

 RFC 3973, “Protocol Independent Multicast – Dense Mode (PIM-DM)”, January 2005 
(Experimental) 

 RFC 4286, “Multicast Router Discovery”, December 2005 (Standards Track) 

 RFC 4541, “Considerations for Internet Group Management Protocol (IGMP) and Multicast 
Listener Discovery Protocol (MLD) Snooping Switches”, May 2006 (Informational) 

 RFC 4601, “Protocol Independent Multicast – Sparse Mode (PIM-SM): Protocol Specification 
(Revised)”, August 2006 (Standards Track) 

 RFC 4604, “Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast 
Listener Discovery Protocol Version 2 (MLDv2) for Source-Specific Multicast”, August 2006 
(Standards Track) 

 RFC 4605, “Internet Group Management Protocol (IGMP) / Multicast Listener Discovery (MLD)-
Based Multicast Forwarding (IGMP/MLD Proxying)”, August 2006 (Standards Track) 

 RFC 4607, “Source Specific Multicast for IP”, August 2006 (Standards Track) 
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 RFC 4610, “Anycast-RP Using Protocol Independent Multicast (PIM)”, August 2006 (Standards 
Track) 

 RFC 5015, “Bidirectional Protocol Independent Multicast (BIDIR-PIM)”, October 2007 
(Standards Track) 

 RFC 5060, “Protocol Independent Multicast MIB”, January 2008 (Standards Track) 

 RFC 5110, “Overview of the Internet Multicast Routing Architecture”, January 2008 
(Informational) 

 RFC 5135, “IP Multicast Requirements for a Network Address Translator (NAT) and a Network 
Address Port Translator (NAPT)”, February 2008 (Best Current Practices) 

 RFC 5332, “MPLS Multicast Encapsulations”, August 2008 (Standards Track) 

 RFC 5374, “Multicast Extensions to the Security Architecture for the Internet Protocol”, 
November 2008 (Standards Track) 

 RFC 5384, “The Protocol Independent Multicast (PIM) Join Attribute Format”, November 2008 
(Standards Track) 

 RFC 5401, “Multicast Negative-Acknowledgement (NACK) Building Blocks”, November 2008 
(Standards Track) 

 RFC 5519, “Multicast Group Membership Discovery MIB”, April 2009 (Standards Track) 

 RFC 5740, “NACK-Oriented Reliable Multicast (NORM) Transport Protocol”, November 2009 
(Standards Track) 

 RFC 5771, “IANA Guidelines for IPv4 Multicast Address Assignments”, March 2010 (Best 
Current Practice) 

 RFC 5790, “Lightweight Internet Group Management Protocol Version 3 (IGMPv3) and Multicast 
Listener Discovery Version 2 (MLDv2) Protocols”, February 2010 (Standards Track) 

 
 
3.3.3.3 – Internet Group Management Protocol (IGMP) 
 
IGMP is an Internet Layer protocol that supports IPv4 multicast. It manages the membership of IPv4 
multicast groups, and is used by network hosts and adjacent multicast routers to establish multicast 
group membership. There are three versions of it so far. IGMPv1 is defined in RFC 1112, “Host 
Extensions for IP Multicasting”, August 1989. IGMPv2 is defined in RFC 2236, “Internet Group 
Management Protocol, Version 2”, November 1997. IGMPv3 is defined in RFC 3376, “Internet Group 
Management Protocol, Version 3”, October 2002. 
 
Some “Layer 2” switches have a feature called “IGMP snooping”, which allows them to look at the 
“Layer 3” packet content, to enable multicast traffic to go only to those ports which have subscribers on 
them, while blocking it (and thereby reducing unnecessary traffic) on ports with no subscribers. A switch 
without IGMP snooping will flood all connected nodes in the broadcast domain with all multicast traffic. 
This can be used by hackers to “deny service” to clients that are too busy receiving and ignoring 
multicast traffic to handle useful traffic. This is called a Denial of Service, or DoS attack. Active IGMP 
snooping is described in RFC 4541, “Considerations for Internet Group Management Protocol (IGMP) 
and Multicast Listener Discovery Protocol (MLD) Snooping Switches”, May 2006. 
 
 
3.3.3.4 – Protocol Independent Multicast (PIM) 
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PIM supports IPv4 multicast. It is called “protocol independent” because it does not include its own 
network topology discovery mechanism. PIM does not include routing, but provides multicast 
forwarding by using static IPv4 routes, or routing tables created by IPv4 routing protocols, such as RIP, 
RIPv2,  OSPF, IS-IS or BGP. 
 
PIM Dense Mode is defined in RFC 3973, “Protocol Independent Multicast – Dense Mode (PIM-DM)”, 
January 2005. This uses dense multicast routing, which builds shortest-path trees by flooding multicast 
traffic domain wide, then pruning branches where no receivers are present. It does not scale well. 
 
PIM Sparse Mode is defined in RFC 4601, “Protocol Independent Multicast – Sparse Mode (PIM-SM)”, 
August 2006. PIM-SM builds unidirectional shared trees routed at a rendezvous point per group, and can 
create shortest-path trees per source. It scales fairly well for wide-area use. 
 
Bidirectional PIM is defined in RFC 5015, “Bidirectional Protocol Independent Multicast (BIDIR-PIM)”, 
October 2007. It builds shared bi-directional trees. In never builds a shortest-path tree, so there may be 
longer end-to-end delays, but it scales very well.  
 
 
3.3.4 – ICMPv4: Internet Control Message Protocol for IPv4 
 
ICMPv4 is a key protocol in the Internet Layer that complements version 4 of the Internet Protocol 
(IPv4). It was originally defined in RFC 792, “Internet Control Message Protocol”, September 1981. There 
are a number of ICMP messages defined. Some of these are generated by the network stack in response 
to errors in datagram delivery. Some are used for diagnostic purposes (to check for network 
connectivity). Others are used for flow control (source quench) or routing (redirect).  
 
An ICMPv4 message consists of an IPv4 packet header, followed by 8 bytes that specify the details for 
each ICMP message, followed by 32 or more bytes of data (depending on implementation). 
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Figure 3.3-c: ICMPv4 Message Synax 

 
The IP Header Version field contains the value 4 (for IPv4), and the Header Length is 20 bytes. 
 
The IP Header Type of Service contains the value 0. 
 
The IP Header Total Length field contains the sum of 20 (header length) + 8 (ICMP header Length) + 
number of bytes of data to be sent in message. 
 
The IP Header Time To Live field is set to some reasonable count (or very specific counts if used to 
implement the traceroute function). 
 
The IP Header Protocol field contains the value 1 (ICMPv4 protocol) 
 
The IP Header Source Address field contains the IPv4 address of the sending node. 
 
The IP Header Destination Address field contains the IPv4 address of the receiving node. 
 
The ICMP Header Type of Message field (8 bits) specifies the ICMP message type, such as 8 for Echo 
Request. See below for the most common message types. 
 
The ICMP Header Code field (8 bits) specifies options for the ICMP message. For example, with Message 
Type 3, the code defines what failed, e.g. 0 means “Destination network unreachable”, while 1 means 
“Destination host unreachable”. 
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The ICMP Header Checksum (16 bits) field is defined the same way as for an IPv4 header, but covers the 
bytes in the ICMP message (not including the IP header bytes). 
 
The ICMP Header ID field (16 bits) can contain an ID, used only in Echo messages. 
 
The ICMP Header Sequence field (16 bits) contains a sequence number, also used only in Echo messages. 
 
Type    Code  Description 
 
0 – Echo Reply   0  Echo reply (in response to Echo request) 
 
3 – Destination Unreachable 0  Net unreachable 
    1  Host unreachable 
    2  Protocol unreachable 
    3  Port unreachable 
    4  Fragmentation required, and DF flag set 
    5  Source route failed 
 
4 – Source Quench  0  Source quench for congestion control 
 
5 – Redirect Message  0  Redirect Datagram for the Network 
    1  Redirect Datagram for the Host 
    2  Redirect Datagram for the TOS & network 
    3  Redirect Datagram for the TOS & host 
 
8 – Echo Request  0  Echo Request 
 
11 – Time Exceeded  0  TTL expired in transit 
    1  Fragment reassembly time exceeded 
 
 
For a ping diagnostic, the sending node transmits an ICMP Echo Request message (Type = 8). The ID can 
be set to any value (0 to 65,535), and the sequence number is set initially to 0, then is incremented by 
one for each ping in a sequence. The Data field (following the ICMP header) can contain any data 
(typically some ASCII string). When the receiving node gets an ICMP Echo Request, it sends an ICMP 
Echo Reply (Type = 0). The ID, sequence number and data fields in the reply must contain exactly what 
were sent in the request.  
 
If the destination of a packet is unreachable, your TCP/IP stack will return a Destination Unreachable 
ICMP packet, with the code explaining what could not be reached. 
 
If a packet cannot be sent by the preferred path (e.g. due to a link specified in a static route being 
down), an ICMP Redirect message will be sent to the packet sender (typically the previous router) which 
should then try other paths. 
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If the TTL in a packet header is decremented all the way to zero, the packet is discarded, and a Time 
Exceeded ICMP message will be sent to the packet sender. 
 
If a node is receiving packets faster than it can handle them, it can send an ICMP Source Quench 
message to the sender, who should slow down. 
 
According to the standards, all nodes should always respond to an Echo Request with an Echo Reply. 
Due to use of this function by many hackers and worms (for network mapping), many sites now violate 
the standard and do not reply to Echo requests. Many ISPs now actually block Echo Requests. Note that 
in IPv6, you cannot just block all ICMPv6 messages, as it is a far more integral part of the protocol. 
 
 
3.3.5 – IPv4 Routing 
 
TCP/IP was designed from the beginning to be an internetworking protocol. That means it supports ways 
to get packets from one node to another, even across multiple networks, by various routes through a 
possibly complex series of interconnections. If one or more links go down, the packets may travel by 
another route. Even within a given group of packets (say, ones that constitute a long e-mail message), 
some of the packets may go by one route, and others by another. The process of determining a viable 
route (or routes) to get traffic from A to B is called routing. This is one of the most complex areas of 
TCP/IP. There are entire long books on the subject. We will be covering only the simplest details, in 
order to show what how routing differs between IPv4 and IPv6. 
 
Some simpler network protocols (such as Microsoft’s NetBIOS or NetBEUI) are non-routing. They will 
work only within a single LAN. TCP/IP and Netware’s IPX/SPX support routing. You can connect multiple 
networks together with them and any node in any network can (in general) exchange data with any 
other node in any connected network. The Internet is simply the largest set of interconnected networks 
in the world. TCP/IP’s flexible routing capabilities are one of the things that make it possible. 
 
There are many components used to create IP based networks, including NICs, cables, bridges, switches, 
and gateways. Of these, only gateways (network devices that can forward packets from one network 
segment to another) do routing. There are several kinds of gateways. The simplest case is a router, 
which uses various protocols, such as RIP, OSPF and BGP to determine where to forward packets, 
depending on their destination address. It is possible to build a router from a generic PC (or other 
computer) if it has multiple network interfaces (NICs), connected to multiple (otherwise disjoint) 
networks. Most operating systems with network support can be configured to do packet forwarding 
(accepting a packet from one network, via one NIC, and then forwarding it on to another network, via a 
different NIC). Typically no changes are made to the packet other than decrementing the hop count in 
the IP packet header. If NAT is being performed, numerous changes may be made to the packet header. 
 
It is also possible for a gateway node to do other processing as the packets flow through it, such as 
filtering packets on certain criteria (e.g. allow traffic using port 25 to node 172.20.0.11 to pass, but block 
port 25 traffic to all other nodes). These are called packet filtering firewalls. They are really just routers 
that allow more control over the flow of traffic, and can protect the network from various attacks. Even 
in a packet filtering firewall, all processing still takes place at the Internet Layer. More sophisticated 
packet filtering firewalls can “inspect” the contents of the packets and maintain a record (“state”) of 
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things that really are associated with higher levels of the network stack (e.g. Transport or Application 
Layers). This is called deep packet inspection, or stateful inspection.  
 
It is also possible to have a bastion host that doesn’t just forward traffic; it receives protocol connections 
on behalf of nodes on the internet network, and relays them onward if they are acceptable. They act as 
a proxy for the internal servers. Processing here takes place at the Application Layer. Proxy firewalls are 
much more secure, but also more complex and slower. Typically, a proxy server must be created for 
each protocol handled by the firewall. There can be both incoming proxies (as described above) and 
outgoing proxies (your node makes an outgoing connection to a proxy in your firewall, and it makes a 
further outgoing connection to the node you really want to connect to. These allow better control than 
a simple packet filtering firewall. If a firewall does both packet forwarding with stateful inspection, and 
has proxy servers (incoming and/or outgoing) for at least some protocols, it is called a hybrid firewall, 
and can provide the best of both worlds. 
 
The standards relevant to routing in IPv4 include: 
 

 RFC 1058, “Routing Information Protocol”, June 1988 (Historic) 

 RFC 1142, “OSI IS-IS Intra-domain Routing Protocol”, February 1990 (Informational) 

 RFC 1195 “Use of OSI IS-IS for Routing in TCP/IP and Dual Environments”, December 1990 
(Standards Track) 

 RFC 2328, “OSPF Version 2”, April 1998 (Standards Track) 

 RFC 2453, “RIP Version 2”, November 1998 (Standards Track) 

 RFC 4271, “A Border Gateway Protocol 4 (BGP-4)”, January 2006 (Standards Track) 
 

In Windows, you can view all currently known routes with the “route print” command: 
 
C:>route print 

=========================================================================== 

Interface List 

 11...00 22 15 24 32 9c ......Realtek PCIe GBE Family Controller 

  2...00 22 b0 51 37 7c ......D-Link DGE-530T Gigabit Ethernet Adapter  

  1...........................Software Loopback Interface 1 

 12...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter 

 14...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter #2 

 19...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface 

=========================================================================== 

 

IPv4 Route Table 

=========================================================================== 

Active Routes: 

Network Destination        Netmask          Gateway       Interface  Metric 

          0.0.0.0          0.0.0.0       172.20.0.1      192.168.1.8    276 

        127.0.0.0        255.0.0.0         On-link         127.0.0.1    306 

        127.0.0.1  255.255.255.255         On-link         127.0.0.1    306 

  127.255.255.255  255.255.255.255         On-link         127.0.0.1    306 

      192.168.0.0      255.255.0.0         On-link       192.168.1.8    276 

      192.168.2.1  255.255.255.255         On-link       192.168.1.8    276 

  192.168.255.255  255.255.255.255         On-link       192.168.1.8    276 

        224.0.0.0        240.0.0.0         On-link         127.0.0.1    306 

        224.0.0.0        240.0.0.0         On-link       192.168.1.8    276 
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  255.255.255.255  255.255.255.255         On-link         127.0.0.1    306 

  255.255.255.255  255.255.255.255         On-link       192.168.1.8    276 

=========================================================================== 

Persistent Routes: 

  Network Address          Netmask  Gateway Address  Metric 

          0.0.0.0          0.0.0.0      192.168.0.1  Default 

=========================================================================== 

 

There are a number of routing protocols for IPv4 that are typically handled only in the core, or where a 
customer network meets the core, the edge router. These include RIP, RIPv2, EIGRP, IS-IS, OSPF and 
BGP. 
 
Routing is a very deep, complex subject, and we will be touching only on the most obvious aspects in 
this book, to give a rough idea of the differences in routing between IPv4 and IPv6. 
 
RIP –Routing Information Protocol, version 1. Defined in RFC 1058, “Routing Information Protocol”, June 
1988. This protocol is an older one, but still in widespread use (especially by low end routers, such as 
SOHO units and in some interior gateways). It is used to exchange routing information with gateways 
and other hosts. It is based on the distance vector algorithm, which was first used in the Arpanet, circa 
1967. RIP is a UDP based protocol, using port 520. 
 
RIPv2 – Routing Information Protocol, version 2. Defined in RFC 2453, “RIP Version 2”, November 1998. 
Although OSPF and IS-IS are superior, there were so many implementations of RIP in use, it was decided 
to try to improve on it. Extensions were made to incorporate the concepts of autonomous systems, 
IGP/EGP interactions, subnetting and authentication. The lack of subnet masks in RIPv1 was a particular 
problem. RIPv2 is limited to networks whose longer path is 15 hops.  It also uses fixed “metrics” to 
compare alternative routes, which is an oversimplification. However, RIPv2 becomes unstable if you try 
to account for different metrics. See RFC for details. 
 
EIGRP – Enhanced Interior Gateway Routing Protocol. This is not an IETF protocol, but a Cisco 
proprietary routing protocol based on their earlier IGRP. EIGRP is able to deal with CIDR, including use of 
variable length subnet masks. It can run separate routing processes for IPv4, IPv6, IPX and AppleTalk 
protocols, but does not support translation between protocols. For details, see Cisco documentation. 
 
IS-IS – Intermediate System to Intermediate System Routing Protocol. IS-IS (pronounced “eye-sys”) was 
originally developed by Digital Equipment Corporation (DEC) as part of DECnet Phase V, and formally 
defined as part of ISO/IEC 10589:2002 for the Open System Interconnection reference design. It is not 
an Internet standard, although the details are published as Informational RFC 1142, “OSI IS-IS Intra-
domain Routing Protocol”, February 1990. Another RFC specifies how to use IS-IS for routing in TCP/IP 
and/or OSI environments: RFC 1195 “Use of OSI IS-IS for Routing in TCP/IP and Dual Environments”, 
December 1990. IS-IS is an Interior Gateway Protocol, for use within an administrative domain or 
network. It is not intended for routing between autonomous systems, which is the role of BGP. It is not a 
distance vector algorithm, it is a link-state protocol.  It operates by reliably flooding network topology 
information through a network of routers, allowing each router to build its own picture of the complete 
network. OSPF (developed by the IETF about the same time) is more widely used, although it appears 
that IS-IS has certain characteristics that make it superior in large ISPs. 
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OSPFv2 – Open Shortest Path First, Version 2. Unlike EIGRP and IS-IS, OSPF is an IETF standard. OSPFv2 is 
defined in RFC 2328, “OSPF Version 2”, April 1998. OSPF is the most widely used Interior Gateway 
Protocol today (as opposed to BGP, which is an Exterior Gateway Protocol). Like IS-IS, OSPF is a link-state 
protocol. It gathers link state information from available routers and builds a topology map of the 
network.  It was designed to support variable-length subnet masking (VLSM) or CIDR addressing models. 
Changes to the network topology are rapidly detected, and it converges on a new optimal routing 
structure within seconds. It allows specification of different metrics (“cost of transmission” in some 
sense) for various links to allow better modeling of the real world (where some links are fast, some 
slow). OSPF does not layer over UDP or TCP, but uses IP datagrams with a protocol number of 89. This is 
very different from RIP or BGP. OSPF uses multicast, including the special addresses: 
 
 224.0.0.5  All SPF/link state routers AllSPFRouters 
 224.0.0.6  All Designated Routers  ALLDRouters 
 
For routing IPv4 multicast traffic, there is MOSPF (Multicast Open Short Path First), defined in RFC 1584, 
“Multicast Extensions to OSPF”, March 1994. However, this is not widely used. Instead, most people use 
PIM in conjunction with OSPF or other Interior Gateway Protocols. 
 
BGP-4 – Border Gateway Protocol 4. Defined in RFC 4271, “A Border Gateway Protocol 4 (BGP-4)”, 
January 2006. This version supports routing only IPv4. There are defined multiprotocol extensions 
(BGP4+) that support IPv6 and other protocols, which will be described in Chapter 5. 
 
BGP is an External Gateway Protocol (compare with IS-IS and OSPFv2, which are Internal Gateway 
Protocols). It is not used within networks, but only between Autonomous Systems. Its primary function 
is to exchange network reachability information with other BGP systems. This includes information on 
the list of Autonomous Systems (ASes) that reachability information traverses. This is sufficient for BGP 
to construct a graph of AS connectivity from which routing loops can be pruned, and, at the AS level 
certain policy decisions may be enforced. 
 
BGP-4 includes mechanisms for supporting CIDR. They can advertise a set of destinations as an IP prefix, 
eliminating the concept of network “class” which was present in early BGP implementations. BGP-4 also 
has mechanisms that allow aggregation of routes and AS paths. Most networks that obtain service from 
ISPs never deploy BGP themselves. It is mostly for exchange of information between ISPs, especially if 
they are multi-homed (obtain upstream service from more than one source). This would be referred to 
as Exterior Border Gateway Protocol or EBGP. Enormous networks that are too large for OSPF could 
deploy BGP themselves as a top level linking multiple OSPF routing domains (this would normally be 
referred to as Interior Border Gateway Protocol or IBGP). 
 
BGP is a path vector protocol. It does not use IGP metrics, but makes routing decisions based on path, 
network policies and/or rulesets. It replaces the now defunct Exterior Gateway Protocol (EGP), which 
was formally specified in RFC 904, “Exterior Gateway Protocol Formal Specification”, April 1984. 
 
 
3.3.5.1 – Network Address Translation (NAT) 
 
It is also possible for a gateway to do Network Address Translation (NAT) as packets are forwarded. One 
form of this allows multiple internal nodes (which use Private Addresses, such as 10.1.2.3) to be 
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translated to globally routable addresses (like 123.45.67.89) on the way out. It also can translate the 
globally routable destination address of packets sent in reply to an outgoing packet back to the Private 
Address of the originating node, so that it can complete a query/response transaction. Typically ports 
are shifted by a NAT gateway in such a way that it can figure out which internal node to send reply 
packets to. This allows many internal nodes to “share” (hide behind) a single globally routable IPv4 
address (necessary now that we are running out of these). NAT will be covered in more detail in the next 
chapter. 
 
The relevant RFCs for NAT for IPv4 include: 
 

 RFC 1918, “Address Allocation for Private Internets”, February 1996 (Best Current Practices) 

 RFC 2663, “IP Network Address Translator (NAT) Terminology and Considerations”, August 
1999 (Informational) 

 RFC 2694, “DNS extensions to Network Address Translators (DNS_ALG)”, September 1999 
(Informational) 

 RFC 2709, “Security Model with Tunnel-mode IPsec for NAT Domains”, October 1999 
(Informational) 

 RFC 2993, “Architectural Implications of NAT”, November 2000 (Informational) 

 RFC 3022, “Traditional IP Network Address Translator (Traditional NAT)”, January 2001 
(Informational) 

 RFC 3235, “Network Address Translator (NAT)-Friendly Application Design Guidelines”, January 
2002 (Informational) 

 RFC 3519, “Mobile IP Traversal of Network Address Translation (NAT) Devices”, April 2003 
(Standards Track) 

 RFC 3715, “IPsec-Network Address Translation (NAT) Compatibility Requirements”, March 
2004 (Informational) 

 RFC 3947, “Negotiation of NAT-Traversal in the IKE”, January 2005 (Standards Track) 

 RFC 4008, “Definitions of Managed Objects for Network Address Translators (NAT)”, March 2005 
(Standards Track) 

 RFC 4787, “Network Address Translation (NAT) Behavioral Requirements for Unicast UDP”, 
January 2007 (Best Current Practices) 

 RFC 4966, “Reasons to Move the Network Address Translator – Protocol Translator (NAT-PT) to 
Historic Status” (Informational) 

 RFC 5128, “State of Peer-to-Peer (P2P) Communication across Network Address Translators 
(NATs)”, March 2008 (Informational) 

 RFC 5207, “NAT and Firewall Traversal Issues of Host Identity Protocol (HIP) Communication”, 
April 2008 (Informational) 

 RFC 5382, “NAT Behavioral Requirements for TCP”, October 2008 (Best Current Practices) 

 RFC 5389, “Session Traversal Utilities for NAT (STUN)”, October 2008 (Standard Track) 

 RFC 5508, “NAT Behavioral Requirements for ICMP”, April 2009 (Best Current Practices) 

 RFC 5597, “Network Address Translation (NAT) Behavioral Requirements for the Datagram 
Congestion Control Protocol”, September 2009 (Best Current Practices) 

 RFC 5684, “Unintended Consequences of NAT Deployments with Overlapping Address Space”, 
February 2010 (Informational) 
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It should be obvious from the number of RFCs that explain how NAT affects other things that NAT has a 
heavy impact on almost every aspect of networks. There are also a lot of “Informational” RFCs required 
to explain exactly how it impacts these things. Removing NAT has no downside (given sufficient 
addresses) and vastly simplifies network architecture and management in addition to lowering costs. It 
also vastly simplifies application design and implementation. The removal of NAT and restoration of the 
flat address space is one of the main benefits of moving to IPv6. Unfortunately, we have an entire 
generation of network engineers who have assumed that NAT is “the way networks are done”, and 
don’t realize it was created only as a temporary crutch to extend the life of the IPv4 address space until 
IPv6 could be completed and deployed. Before NAT, the IPv4 Internet was “flat” and firewalls had very 
effective security without NAT (I call this “classic firewall architecture”). In IPv6, we are simply returning 
to the original concept of any node to any node connectivity that characterized the Pre-NAT IPv4 
Internet. Protocols like SIP, IPsec, IKE and Mobile IP will work far better without NAT in the way. DNS is 
also greatly simplified in the absence of NAT (no internal vs. external “views” are required). 
 
Most routers and firewalls typically include NAT for IPv4, although it would be possible to have a NAT 
gateway without any filtering or routing capabilities that does only NAT.  
 
In general, any gateway that modifies the source and/or destination addresses in a packet (possibly also 
the source port number) is doing NAT. There are several forms of it, the most popular being address 
masquerading (hide mode NAT) and one-to-one (BINAT, or static NAT). 
 
Most IPv4 networks today make use of private addresses as defined in RFC 1918, “Address Allocation for 
Private Internets”, February 1996. Basically, three blocks of addresses (10.0.0.0/8, 172.16.0.0/12 and 
192.168.0.0/16) were permanently removed from the available Internet allocation pool, marked as 
“unroutable” on the Internet, and reserved for use as something similar to telephone extension 
numbers in an office (hiding behind a single company phone number, via a Private Branch Exchange). It 
is possible for any company to use addresses from any or all of these ranges to number the nodes inside 
their networks. However, these addresses cannot be routed on the Internet from anyone, since they are 
no longer globally unique). Hence, if the users of nodes with those addresses want to use the Internet, 
there must be address translation to and from “real” (globally unique) addresses at the gateway that 
connects them to the Internet, which is what NAT does. 
 
Note that the most popular form of NAT is more properly called NAPT (“Network Address Port 
Translation”) which involves the translation of both IP addresses and port numbers. 
 
NAT is defined in RFC 3022, “Traditional IP Network Address Translator (Traditional NAT)”, January 2001. 
Some aspects of NAT are defined in RFC 2663, “IP Network Address Translator (NAT) Terminology and 
Considerations”, August 1999. 
 
One form of NAT Traversal (STUN) is defined in RFC 5389 “Session Traversal Utilities for NAT (STUN)”, 
October 2008. STUN is a protocol that serves as a tool for other protocols in dealing with Network 
Address Translator (NAT) traversal.  It can be used by an endpoint to determine the IP address and port 
allocated to it by a NAT. It can also be used to check connectivity between two endpoints, and as a 
keepalive protocol to maintain NAT bindings. STUN works with many existing NATs and does not require 
any special behavior from them. 
 
Connection without NAT (inside the LAN) 
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Say you have two nodes (Alice and Bob) on your LAN. Alice has the address 10.50.3.12, and Bob has the 
address 10.50.3.75 (both private addresses). They can make connections within their LAN (to any 
address in the 10.0.0.0/8 network) with no problem. Say there is a web server (port 80) at 10.1.20.30. 
In the following, we will specify the port number appended to the IP address, separated by a colon (e.g. 
10.50.3.12:12345). When Alice makes a connection to the web server, the destination port is 80, but her 
source port is a randomly chosen value greater than 1024, that is not already in use (e.g. 12345 or 
54321). The same source port would be used for the duration of the connection. Replies from the server 
would be sent using Alice’s source address and port as the destination address and port in the reply 
packets. For example: 
 
     Source Addr:Port Destination Addr:Port 
Traffic from Alice to Server:  10.50.3.12:12345 10.1.20.30:80 
Replies from Server to Alice:  10.1.20.30:80  10.50.3.12:12345 
 
Traffic from Bob to Server:  10.50.3.75:54321 10.1.20.30:80 
Replies from Server to Bob:  10.1.20.30:80  10.50.3.75:54321 
 
Note: the above behavior is somewhat simplified. Such as server could accept only one connection at a 
time, which would have to complete before anyone else could connect. This is because a given 
address:port can only handle one connection at any given time. A real-world server would have a parent 
process listening for connections on a well known port (e.g. 80). When some client connects to the well 
known port, the parent process would create a child process (or thread) which would accept the 
connection (using yet another unused port number) and process it. Meanwhile the main process would 
go back to listening for further connections on the well known port. If ten users were connected at a 
time, there would be 11 processes running, one main process and ten child processes (one for each 
connection). From the viewpoint of the client (e.g. with “netstat –na”) it would appear that the remote 
port (the one on the server) was the original well known port (e.g. 80). 
 
Connection through Hide Mode NAT 
 
But how do Alice and Bob connect to www.ipv6.org? That node happens to have an IPv4 address of 
130.237.234.40, and we’re still in Chapter 3, so they don’t have IPv6 yet! Let’s say there is a NAT 
gateway where their LAN (or ISP) connects to the Internet. It has an “outside” address (which must be a 
valid, routable IPv4 address) of 12.34.56.137. If either Alice or Bob connect to www.ipv6.org (over IPv4), 
they will be told that they are connecting over IPv4, from the address 12.34.56.137, not from their 
private address, even if the connections are made at the same instant. How can www.ipv6.org reply 
with the correct webpage to each of them? 
 
With hide mode NAT, the gateway is translating the source address in Alice’s packets from 10.50.3.12 to 
12.34.56.137. It is also translating the source address in Bob’s packets from 10.50.3.75 to 12.34.56.137. 
The destination address was 130.237.234.40:80 for both Alice and Bob. Their browsers would each 
choose a random source port. Let’s say Alice’s chose 10123 and Bob’s chose 20321. The NAT gateway 
would not only translate the source address from both Alice and Bob, it would also shift the source 
ports, and keep track in a table of the source address, the original source port, and the shifted source 
port (for each connection). Let’s say Alice’s port is shifted to 30567 and Bob’s to 40765. The New Source 
Address for outgoing connections and the old destination address for incoming connections will always 
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be the same (the outside address of the NAT gateway), so it does not need to keep those in the table. 
The resulting NAT table would look like this: 
 
  Source Addr:Port  Shifted Port 
  10.50.3.12:10123  30567 
  10.50.3.75:20321  40765 
 
    Src Addr:Port   Xlat Src Addr :Port Dest. Addr :Port 
Traffic from Alice to server: 10.50.3.12:10123 12.34.56.137:30567 130.237.234.40:80 
 
    Src Addr:Port  Dest Addr:Port  Xlat Dest Addr:Port 
Traffic from server to Alice: 130.237.234.40:80 12.34.56.137:30567 10.50.3.12:10123 
 
    Src Addr:Port   Xlt Src Addr :Port Dest. Addr :Port 
Traffic from Bob to server: 10.50.3.75:20321 12.34.56.137:40765 130.237.234.40:80 
 
    Src Addr:Port  Dest Addr:Port  Xlt Dest Addr:Port 
Traffic from server to Bob: 130.237.234.40:80 12.34.56.137:40765 10.50.3.75:20321 
 
Alice’s connection appears (to www.ipv6.org) to be coming from 12.34.56.137:30567. When ipv6.org 
replies to Alice, it is sent from 130.237.234.40:80 to 12.34.56.137:30567. The NAT gateway looks up that 
port in its table, and sees that it was used for an outgoing connection from 10.50.3.12:10123, so it 
translates the destination address and port to that, and forwards the packets correctly to Alice.  
 
Bob’s connection appears (to www.ipv6.org) to be coming from 12.34.56.137:40765. When ipv6.org 
replies to Bob, it is sent from 130.237.234.40:80 to 12.34.56.137:40765. The NAT gateway looks that 
port up in its table, and sees that it was used from a connection from 10.50.3.75:20321, so it translates 
the destination address and port to that, and forwards those packets correctly to Bob. 
 
BINAT (One to One NAT) 
 
If you are doing NAT at your gateway, most routers or firewalls support another form of NAT, which is 
known as BINAT (Bidirectional NAT) or One-to-One (sometimes also static NAT). This works much the 
same as regular (hide mode) NAT, except there is no port shifting involved. This means there can only be 
one internal node associated with each globally routable external address. This is used only for servers 
that must be accessible from the outside world. 
 
Typically a server has both an internal (private) address (e.g. 10.0.0.13), and an external (unique, globally 
routable) address (e.g. 12.34.56.131). With for outgoing connections, the gateway rewrites the source 
address of each packet to be the external address for that node (but does not shift the port). For 
incoming connections, the gateway rewrites the destination address to be the internal address for that 
node. Internally, the node will have only the internal address. However, if you connected to 
www.ipv6.org from such a node, it would show a connection from not the hide mode address for the 
gateway, but the unique external address associated with that node.  
 
There is a minor problem of the missing arp that must be solved in some way for this to work. One 
approach is to configure a static arp on the gateway that can supply it. Every operating system or router 
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has some way to do this. Without that, connections from the outside will not work. This is one of the 
most difficult things for firewall administrators to master. 
 
This at least allows incoming connections, but uses up one globally routable IPv4 address for each server 
node. Most SOHO gateways do not support BINAT. Many do have a simpler mechanism called port 
redirection, which allows incoming connections to the hide mode external address. At most one internal 
server can be configured as the target for any given port. So, you could configure an internal mail server 
and redirect ports 25 (SMTP), 110 (POP3) and 143 (IMAP) to it. 
 
Ramifications of Using NAT 
 
When network address translation happens, the NAT gateway is actually rewriting new values into the 
address and port number fields in the IP and TCP (or UDP) packet headers of all packets flowing through 
the NAT gateway, according to the rule just specified. For outgoing packets, it is rewriting the source 
address and source port. For incoming packets, it is rewriting the destination address and destination 
port. Obviously, this would invalidate the IP and TCP header checksums (the IP header contains source 
and destination addresses, the TCP header contains the source and destination port numbers). 
Therefore the NAT gateway also has to recalculate both IP and TCP header checksums and rewrite those 
as well.  
 
Packet fragmentation is a real complication for TCP and UDP via NAT. A NAT gateway must reassemble 
an entire packet, in order to be able to recalculate the TCP checksum (which covers all bytes in the 
payload, plus the pseudo header which contains the source and destination addresses). It typically must 
then re-fragment the packet for further transmission. 
 
What about IPsec Authentication Header? The IPsec AH algorithm works like a checksum, but there is a 
key which only the sender has, required to generate the cryptographic checksum. All this address and 
port rewriting invalidates the existing AH cryptographic checksum, and the NAT gateway does have the 
necessary key to regenerate a correct new AH for based on modified packet headers. IPsec does not 
work through a NAT gateway. Actually AH is performing its function very effectively – it is detecting 
tampering with the contents of the packet header! It just happens that this tampering is done by a NAT 
gateway, not a hacker. It’s kind of like getting hit by “friendly fire” in a war zone (getting shot by your 
own side). If any node other than the original sender could generate a new valid AH checksum, then AH 
would not be very useful! IPsec and NAT are mutually exclusive (although IPsec VPNs can be made to 
work in conjunction with NAT Traversal). 
 
Another ramification is with FTP (File Transfer Protocol). FTP is a very old protocol. In active mode, FTP 
uses separate connections for control traffic (commands) and for data traffic. The initiating host 
identifies the corresponding data connection with its network layer and transport layer addresses. 
Unfortunately NAT invalidates this. Fortunately here, it is possible to create a reverse FTP proxy 
(included on most firewalls) that solves this problem. Without such a proxy though, FTP will not work if 
NAT is in place, even for outgoing connections. My company early on ported a popular one for IPv4 to 
IPv6. That allowed FTP connections to dual stack networks such as freebsd.org to work from our own 
dual stack network. 
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Peer-to-peer applications have the same kinds of problems with NAT. You must somehow provide a way 
for your peers to connect to you for these applications to work. All participants really need a real, 
globally routable IP address. This is not easy to arrange on the First Internet. 
 
The SIP (Session Initiation Protocol) is used with many things, including VoIP and video conferencing. It 
also has major problems with NAT. SIP may use multiple ports to set up a connection and transmit the 
analog stream over RTP (Real Time Protocol). IP addresses and port numbers are encoded in the payload 
and must be known prior to the traversal of NAT gateways. Again, a SIP proxy on the gateway can help 
resolve this problem. Another solution is to use NAT traversal, such as STUN. Unfortunately, in these 
days of widespread NAT, both the caller and the callee are typically behind NAT, so VoIP must overcome 
problems with NAT both going out from the caller, and coming in to the callee. 
 
Another problem with NAT is the limit of 65,536 ports on the NAT gateway. When NAT was first 
deployed, most network applications used only one or two ports. Some recent applications (Apple’s 
iTunes and Google Maps) use 200-300 ports at a time. If each node is using 300 ports, then there can be 
at most 200 nodes behind a given external IPv4 address. If the NAT gateway runs out of ports, there can 
be very mysterious failures in network applications. For example, in Google Maps, some areas of the 
map never get drawn. There is no way for end users (or typically even the network administrator) to 
determine that this has happened other than by seeing mysterious failures in some applications. This 
means that a larger number of NAT gateways (and valid external IPv4 addresses) are required today 
than in the past, for a given number of users behind NAT. Just as we are running out of them! 
 
Most legacy applications (like web surfing and e-mail) work OK through one layer of NAT. Even with 
chat, today there must be an intermediary system that two or more chatters connect to via outgoing 
connections from their nodes (e.g. AOL Instant Messenger). In a flat address space (especially with 
working multicast), much better connectivity models are possible, that may require little or no central 
facilities. 
 
As the IPv4 addresses run out, it will become more common to have multiple layers of NAT. This can 
happen today, if you deploy a Wi-Fi access point with NAT behind a DSL modem that also has NAT. If you 
think a single layer of NAT causes problems, you should try dealing with multiple layers of it! 
 
With the wide scale deployment of NAT, we have lost the original end-to-end model of the early First 
Internet, which was a core feature. Today users are either content producers who can publish 
information or videos (e.g. cnn.com, youtube.com) or content consumers who can view the content 
published by the producers. It is much more complicated and expensive to be a producer in the current 
First Internet (with NAT), than to be a consumer. There are relatively few producers, and millions of 
consumers. This was not that much of a problem when most people were running mainly web browsers 
and e-mail clients on their nodes. As newer applications emerge (VoIP, IPTV, multi-player games, Peer-
to-peer), this new “digital divide” between producers and consumers is becoming more of a problem. 
Today, many people would like to be prosumers (both producers and consumers of content). 
 
All of these problems go away with a flat address space (no NAT). Unfortunately, there is no way to 
restore the flat address space of the early (pre-NAT) First Internet. The First Internet is now permanently 
broken (there are not enough addresses to allow even the existing users to have access without NAT, 
even if we used all of the remaining unallocated addresses today). The only real solution is to switch to 
IPv6 (at least for protocols such as VoIP, P2P, multiplayer games, IPTV and IPsec VPNs). 
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3.3.5.2 – Basic IPv4 Routing 
 
In the simplest case, where two nodes (A and B) are on the same network segment (not separated by 
any router), no routing is required. This is determined by examining B’s IP address. If it is in the same 
subnet as A’s IP address, then B is a local node. Node A simply uses B’s MAC address from its MAC table 
to send the packet to B. If there is no entry for B’s IP address, then ARP is used to do address resolution 
(obtain the MAC address for B). 
 
If B’s address is not in the local subnet, B is not a local node, and the packet (with B’s correct IP address 
as the destination) is sent to the node which serves as the default gateway for A’s subnet (A may first 
have to do an ARP to obtain the MAC address of the default gateway). The default gateway is a node 
with multiple network interfaces that knows how to forward the packet on towards the network in 
which B’s IP address is found. Note that by default, packet forwarding (relaying packets from one 
interface to another on a multi-homed system) is not enabled. It must be specifically enabled for each 
protocol (IPv4 and IPv6). The address of a network’s default gateway is known to every node in a subnet, 
either through manual configuration or via DHCPv4. Once the default gateway receives the packet, it 
may already have the necessary routing information to know where to send that packet (either via static 
routes, or via a routing protocol, such as RIP, OSPF and/or BGP). In the case of a home network, your 
SOHO router typically just knows how to forward packets for the outside world to yet another gateway 
at the ISP, where the real routing takes place (via its own default gateway, which is a node at the ISP). 
 
Once your traffic gets to your default gateway, that node typically uses an Interior Gateway Routing 
Protocol (RIP. RIPv2 or OSPF) to route that traffic to the edge of your overall network (e.g. the place 
your organization’s or ISP’s network connects to the rest of the Internet). At that point, an Exterior 
Gateway Routing Protocol (typically BGP-4) is used to determine the best route to the correct edge 
router for the destination address. Once your traffic arrives there, once again an Interior Gateway 
Routing Protocol (RIP, RIPv2 or OSPF) takes over and get the packets to the default gateway of the 
subnet where the destination node lives. From there, ARP is used to forward the packets to the actual 
destination node, because the default gateway and the destination node are now on the same subnet. 
And all this takes place in the blink of an eye, billions of times a day, just like clockwork. 
 
 
3.4 – TCP: The Transmission Control Protocol 
 
The Transmission Control Protocol is defined in RFC 793, “Transmission Control Protocol”, September 
1981. This is a Transport Layer protocol. TCP implements a reliable, connection oriented model. When 
we say reliable, we aren’t talking about a well designed or robust protocol. With respect to TCP, 
“reliable” simply means that it includes error detection and recovery (via retransmission). The term 
connection oriented refers to the fact that TCP is designed to handle potentially large streams of data 
(typically larger than a single packet). It does this by breaking the large object up into multiple packet 
sized chunks and sending them out in an ordered sequence. For example, a large e-mail message or a 
JPEG photograph might require quite a few packets. Software that uses TCP typically opens (initiates) a 
connection for I/O, reads and/or writes potentially a lot of data to it, then when done, closes 
(terminates) the connection. This is very similar to the process for reading and writing files, and in fact in 
UNIX, network streams are just a special kind of file. 
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The following standards are relevant to TCP: 
 

 RFC 793, “Transmission Control Protocol”, September 1981 (Standards Track) 

 RFC 896, “Congestion Control in IP/TCP Internetworks”, January 1984 (Unknown) 

 RFC 1001, “Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and 
Methods”, March 1987 (Standard Track) 

 RFC 1002, “Protocol standard for a NetBIOS service on a TCP/UDP transport: Detailed 
specifications”, March 1987 (Standards Track) 

 RFC 1006, “ISO Transport Service on top of the TCP Version: 3”, May 1987 (Standards Track) 

 RFC 1085, “ISO presentation services on top of TCP/IP based internets”, December 1998 
(Uknown) 

 RFC 1086, “ISO-TP0 bridge between TCP and X.25”, December 1988 (Unknown) 

 RFC 1144, “Compressing TCP/IP Headers for Low-Speed Serial Links”, February 1990 
(Standards Track) 

 RFC 1155, “Structure and identification of management information for TCP/IP-based internets”, 
May 1990 (Standards Track) 

 RFC 1180, “TCP/IP tutorial”, January 1991 (Informational) 

 RFC 1213, “Management Information Base for Network Management of TCP/IP-based internets: 
MIB II”, March 1991 (Standards Track) 

 RFC 1323, “TCP Extensions for High Performance”, May 1992 (Standards Track) 

 RFC 2018, “TCP Selective Acknowledgement Options”, October 1996 (Standards Track) 

 RFC 2126, “ISO Transport Service on top of TCP (ITOT)”, March 1997 (Standards Track) 

 RFC 2883, “TCP Processing of the IPv4 Precedence Field”, June 2000 (Standards Track) 

 RFC 2883, “An Extension to the Selective Acknowledgement (SACK) Option for TCP”, July 2000 
(Standards Track) 

 RFC 2988, “Computing TCP’s Retransmission Timer”, November 2000 (Standards Track) 

 RFC 3042, “Enhancing TCP’s Loss Recovery Using Limited Transport”, January 2001 (Standards 
Track) 

 RFC 3293, “General Switch Management Protocol (GSMP) Packet Encapsulation for 
Asynchronous Transfer Mode (ATM), Ethernet and Transmission Control Protocol (TCP)”, June 
2002 (Standards Track) 

 RFC 3390, “Increasing TCP’s Initial Window”, October 2002 (Standards Track) 

 RFC 3517, “A Conservative Selective Acknowledgement (SACK)-based Loss Recovery Algorithm 
for TCP”, April 2003 (Standards Track) 

 RFC 3782, “The NewReno Modifications to TCP’s Fast Recovery Algorithm”, April 2004 
(Standards Track) 

 RFC 3821, “Fiber Channel over TCP/IP (FCIP)”, July 2004 (Standards Track) 

 RFC 4015, “The Eifel Response Algorithm for TCP”, February 2005 (Standards Track) 

 RFC 4022, “Management Information Base for the Transmission Control Protocol (TCP)”, 
March 2005 (Standards Track) 

 RFC 4614, “A Roadmap for Transmission Control Protocol (TCP) Specification Documents”, 
September 2006 (Informational) 

 RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP and TCP Headers”, 
November 2006 (Standards Track) 



61 

 

 RFC 4898, “TCP Extended Statistics MIB”, May 2007 (Standards Track) 

 RFC 4996, “Robust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)”, July 2007 
(Standards Track) 

 RFC 5348, “TCP Friendly Rate Control (TFRC): Protocol Specification”, September 2008 
(Standards Track) 

 RFC 5482, “TCP User Timeout Option”, March 2009 (Standards Track) 

 RFC 5681, “TCP Congestion Control”, September 2009 (Standards Track) 

 RFC 5682, “Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission 
Timeouts with TCP”, September 2009 (Standards Track) 

 RFC 5734, “Extensible Provisioning Protocol (EPP) Transport over TCP”, August 2009 (Standards 
Track) 

 
 
3.4.1 – TCP Packet Header 
 

 
Figure 3.4-a: TCP Packet Header 

 
Source Port (16 bits) – specifies the port that the data was written to on the sending node. 
 
Destination Port (16 bits) – specifies  the port that the data will be read from on the receiving node. 
 
Sequence Number (32 bits) – meaning depends on the SYN flag: 

 If the SYN flag is set, this is the initial sequence number. The sequence number of the actual first 
data byte (and the acknowledged number in the resulting ACK) will then be that value plus 1. 



62 

 

 If the SYN flag is clear, this is the accumulated sequence number of the first data byte of this 
packet for the current session. 

 
Acknowledgement Number (32 bits) – used to acknowledge receipt of data: 

 if the ACK flag is set, then this field is the next sequence number that the receiver is expecting. 
This acknowledges receipt of all previous bytes. 

 If the ACK flag is clear, then this field is not used. 
 
Data Offset (4 bits) – specifies the size of the TCP header in 32 bit words. The minimum value is 5 words 
(20 bytes), and the maximum value is 15 words (60 bytes), allowing for up to 40 bytes of options. 
 
Reserved field (4 bits) – not currently used, and must be zeros. 
 
There are 8 1-bit flags (8 bits total) as follows (in order from most significant bit to least significant bit): 

 CWR – Congestion Window Reduced. If set by sender, indicates it has received a TCP segment 
with the ECE flag set, and has responded in congestion control mechanism. 

 ECE – ECN Echo. If SYN flag is set, then ECE set indicates that the TCP peer is ECN capable. If SYN 
flag is clear, then ECE flag set indicates that a Congestion Experienced flag in the IP header set 
was received during normal transmission 

 URG – indicates whether or not Urgent pointer field is significant 

 ACK - if set, indicates that the Acknowledgement field is significant. All packets after the initial 
SYN packet sent by a node should have this flag set. 

 PSH – Push flag. If set, asks to push any buffered data to the receiving application. 

 RST – Reset flag. If set, resets the connection. 

 SYN – Synchronize flag. If set, synchronize sequence numbers. Only the first packet sent from 
each end should have this flag set. 

 FIN – Finished flag – if set, no more data is coming. 
  
Window Size (16 bits) – size of the receive window, which is number of bytes that the receiver is willing 
to receive 
 
Checksum (16 bit) – use for error checking of TCP header and data 
 
Urgent Pointer (16 bits) – if the URG flag is set, this is the offset from the sequence number indicating 
the last urgent data byte 
 
Options (from 0 to 10 32-bit words) – optional, not commonly used – see RFC for details. 
 
Protocol Operation 
 
1. Connections is established using a three-way handshake, which creates a virtual circuit 
2. Data is transferred over the virtual circuit until connection is terminated 
3. Connection termination closes the established virtual circuit and releases allocated resources 
 
TCP operation is controlled by a state machine, with 11 states: 
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1. LISTEN: wait for connection request from a remote client 
2. SYN-SENT: wait for the remote peer to send back a segment with SYN and ACK flags set 
3. SYN-RECEIVED: wait for remote peer to send back acknowledgement after sending  back a connection 
4. ESTABLISHED: port is ready to exchange data with the remote peer 
5. FIN-WAIT-1 
6. FIN-WAIT-2 
7. CLOSE-WAIT 
8. CLOSING 
9. LAST-ACK 
10. TIME-WAIT – insure remote peer has received acknowledgement of termination request (< 4 min.) 
11. CLOSED 
 

 
 

Figure 3.4-c:  TCP State Transition Diagram (from Wikipedia) 
 
Notes: 
 
TCP uses sequence numbers to detect lost packets and/or reorder packets that arrive out of order. The 
cumulative acknowledgment scheme informs the sender that all packets up to the acknowledged 
sequence number have been received. Selective acknowledgement (RFC 2018) allows for optimization 
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of this feature. Lost data is automatically retransmitted by the sender. End-to-end flow control provides 
for a mismatch in performance between sender and receiver. A sliding window algorithm allows 
multiple packets to be in progress which increases efficiency. Recently, congestion control has been 
added into TCP to avoid network congestion. 
 
 
3.5 – UDP: The User Datagram Protocol 
 
The User Datagram Protocol is defined in RFC 768, “User Datagram Protocol”, August 1980. Like TCP, it is 
also a Transport Layer protocol. Unlike TCP, UDP implements an unreliable, connectionless model. When 
we say unreliable we just mean that error detection and recovery are not built into the protocol, so it is 
up to the application to do any desired error detection and recovery. By connectionless, we mean that 
each transmission consists of a single (but complete) packet. In TCP/IPv4, a packet is typically 1508 
bytes, but can be more or less. If you send a big packet, it will likely be fragmented along the way, and 
reassembled at the other end. Each datagram is an atomic event, not connected to any other datagram. 
UDP does not handle streams of data (as is done with the connection oriented model). Software that 
uses UDP does not need to open or close a connection, it can simply read or write datagrams at any 
time, and each operation sends or receives one packet. This is a much simpler model than TCP, with less 
overhead. However, when using UDP you are responsible for doing certain things that TCP does for you, 
such as error recovery. UDP is often used for things like streaming audio or video. It is also used for DNS 
queries and responses, and for TFTP (Trivial File Transfer Protocol). 
 
The following standards are relevant to UDP: 
 

 RFC 768, “User Datagram Protocol”, August 1980 (Standards Track) 

 RFC 2508, “Compressing IP/UDP/RTP Headers for Low-Speed Serial Links”, February 1999 
(Standards Track) 

 RFC 3095, “Robust header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP 
and uncompressed”, July 2001 (Standards Track) 

 RFC 3828, “The Lightweight User Datagram Protocols (UDP-Lite)”, July 2004 (Standards Track) 

 RFC 4019, “Robust Header Compression (ROHC): Profiles for User Datagram Protocol (UDP) 
Lite”, April 2005 (Standards Track) 

 RFC 4113, “Management Information Base for User Datagram Protocol (UDP)”, June 2005 
(Standards Track) 

 RFC 4362, “RObust Header Compression (ROHC): A Link-Layer Assisted Profile for IP/UDP/RTP”, 
January 2006 (Standards Track) 

 RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP and TCP Headers”, 
November 2006 (Standards Track) 

 RFC 4815, “Robust Header Compression (ROHC): Corrections and Clarifications to RFC 3095”, 
February 2007 (Standards Track) 

 RFC 5097, “MIB for the UDP-Lite protocol”, January 2008 (Standards Track) 

 RFC 5225, “RObust Header Compression Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and 
UDP-Lite”, April 2008 (Standards Track) 
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Figure 3.5-a: UDP Packet Header 

 
The Source Port field (16 bits) specifies which port number the data is being written to on the sending 
computer. This field is optional (if not used, fill with zeros). 
 
The Destination Port field (16 bits) specifies which port number the data is being read from on the 
receiving computer. 
 
The Length field (16 bits) is the number of bytes in the datagram, including the UDP header and the 
data, therefore the minimum value is 8 (the length of the UDP header). The maximum value in theory is 
65,536 bytes, but this value is limited by the maximum packet size, typically 1508. 
 
The Checksum field (16 bits) is the 16-bit one’s complement sum of a pseudo header from the IP header, 
the UDP header, and the data, passed with zero bytes at the end to make a multiple of two bytes. The 
pseudo header contains the source and destination IP addresses, the protocol, and the UDP length. This 
field is optional (if not used, fill with zeros).  
 
The Data begins immediately after the Checksum field. It is not really part of the header, and is not 
included in the checksum. 
 
 
3.6 – DHCPv4: Dynamic Host Configuration Protocol for TCP/IPv4 
 
One of the network services that is really useful in network configuration is the Dynamic Host 
Configuration Protocol (DHCP). The version that works with IPv4 is now called DHCPv4 (to distinguish it 
from the one for IPv6, which is called DHCPv6). Without DHCPv4 running on your network, someone 
must manually configure all network settings on every computer. This can be very complicated and error 
prone. It also requires at least some expertise which many users don’t possess. It is possible to 
accidently configure two computers with the same address, or mistype a DNS server’s address on the 
35th computer you install that day. These kinds of errors can cause tricky problems. With a DHCPv4 
server, you can configure all the client computers to do “auto configuration”. When such a computer 
powers up, it will search for a DHCPv4 server (or a relay agent, connected to a real DHCPv4 server in 
another network). When it finds one, it will request configuration data (including the default gateway, 
the IP addresses of the DNS servers, the Internet domain name, and other items, including a lease on an 
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IPv4 address which should be unique within your network. This makes it easier to change things. If you 
moved a DNS server, you need only update your DHCPv4 server configuration, and terminate all client 
leases. 
 
DHCPv4 is widely used by ISPs, especially ones that have lots more customers than valid (globally 
routable) IPv4 addresses. They can set very short lease times, then when someone disconnects, the 
address they had been using can be reused by another customer. Of course these days, most people 
want 7x24 Internet connectivity, as opposed to perhaps one hour a day or dial-up access. Many ISPs 
now provide their customers with RFC 1918 private addresses, unless for some reason they specifically 
require a globally routable address. Some ISPs charge more for a globally routable address, and a lot 
more for multiple globally routable addresses. I have 5 real addresses for my home network, so I can run 
E-mail and other services, in addition to using one to tunnel IPv6 into my network over IPv4. DHCPv4 can 
provide auto configuration with private addresses just as easily as with globally routable addresses, so 
they still use DHCPv4 to assign those. Basically all of their users are now “hiding” behind a single (or a 
few) real addresses, via NAT. 
 
DHCPv4 uses broadcast (which doesn’t exist in IPv6) and can only deliver 32 bit addresses (for the 
assigned IP address or things like DNS IP addresses), so it had to be completely rewritten for IPv6. The 
differences will be covered in the chapter on IPv6. 
 
Most client operating systems in use today (especially on personal computers) include a DHCPv4 client, 
including all versions of Windows, FreeBSD, Linux, Solaris, Mac OSX, etc. Even smart phones with Wi-Fi 
include a DHCPv4 client.  
 
Most server operating systems (such as Windows Server, FreeBSD, Linux, etc) include a DHCPv4 server. 
The most common one for UNIX and UNIX like servers is dhcpd from the Internet Software Consortium 
(ISC). It is configured by editing some complex ASCII text configuration files (with a text editor). This type 
of configuration has not changed appreciably in 50 years (and you thought IPv4 was old). The DHCPv4 
server included with Windows Server at least has a GUI configuration tool, which is much easier to use. 
Most appliances that provide DHCPv4 service include a GUI web based configuration tool (as a “front 
end” to dhcpd, in most cases).  
 
When you configure a DHCPv4 server, you typically configure one or more pools of addresses to be 
managed by that server. You cannot have more than one DHCPv4 server in a given network subnet, but 
DHCPv4 clients cannot contact DHCPv4 servers on another subnet (on the other side of a router). So you 
either need to have a different DHCPv4 server (or at least a relay agent) in every subnet (“broadcast 
domain”). You can create a “scope” on the server, and configure the “stateless” items that it will use to 
auto-configure clients, including the domain name, the subnet mask, the address of the default 
gateway, the IP addresses of two DNS servers, etc. There are dozens of things you can auto-configure 
with DHCPv4.  You also specify a range of addresses (e.g. 192.168.5.1 to 192.168.5.255) as a pool from 
which to lease addresses. You should not manually assign any of these addresses to other nodes. If you 
do for some reason, you can remove that address from the available pool. 
Once such a server is installed and configured, just set up your client computers to “Obtain an IP address 
automatically”, and to “Obtain DNS server address automatically”. As soon as you specify that, or 
anytime the computer powers up, it will obtain all necessary information (including a unique IPv4 node 
address) from the DHCPv4 server. In Windows, you can use the “ipconfig /all” command (in a DOS 
Prompt window) to view the obtained settings (look for the interface named Local Area Connection). 
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By default, addresses are assigned on a “first come, first served” basis. If you want a given node to be 
assigned a specific address each time, you can make an address reservation by associating one of the 
pool addresses with that node’s MAC address. Any time that node requests configuration data from the 
DHCPv4 server, it will be assigned that address, rather than a random one from the pool. 
 
 
3.6.1 – The DHCPv4 Protocol 
 
The DHCPv4 protocol lives in the Application Layer. It uses port 67 for data from client to server, and 
port 68 for data from the server to the client (both over UDP). There are four phases in a DHCPv4 
network configuration: 
 

1 IP Discovery 
2 IP Lease Offer 
3 IP Request 
4 IP Lease Acknowledgement 

 
Let’s say our network uses 192.168.0.0/16. That means the subnet mask is 255.255.0.0. Our DNS servers 
are at 192.168.0.11 and 192.168.0.12. The DHCPv4 server is also running on 192.168.0.11. The default 
gateway is 192.168.0.1. We have created a pool of addresses from 192.168.1.0 to 192.168.1.255. 
 
In the Discover IP phase, the client sends a DHCPDISCOVER request, as follows: 
 

 Source Address = 0.0.0.0, Source Port = 68 

 Destination Address = 255.255.255.255, Destination Port = 67 

 DHCP Option 50: IP address192.168.1.100 is requested 

 DHCP Option 53: Message is DHCPDISCOVER 

 Request Subnet mask, Default Gateway, Domain Name and Domain Name Server(s) 
 
In this case, the node is requesting its last known IP address. Assuming it is still connected to the same 
network, and the address is not already leased to someone else, the server may grant the request. 
Otherwise the client will have to negotiate for a new address. 
 
In the DHCP Offer phase, the server will reserve an IP address for the client (in this case it is accepting 
the request for the last known address), and send a DHCPOFFER message to the client, as follows: 
 

 Source Address = 192.168.0.11, Source Port = 67 

 Destination Address = 255.255.255.255, Destination Port = 68 

 DHCP option 01: Subnet Mask is 255.255.0.0 

 DHCP option 03: Default gateway is 192.168.0.1 

 DHCP option 06: IP addresses of DNS servers are 192.168.0.11 and 192.168.0.12 

 DHCP option 51: lease duration is 86400 seconds (1 day) 

 DHCP option 53: Message is DHCPOFFER 

 DHCP option 54: IP address of DHCP server is 192.168.0.11 
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In the DHCP Request phase, the client accepts the offer, and sends a DHCPREQUEST message as follows: 
 

 Source Address = 0.0.0.0, Source Port = 68 

 Destination Address = 255.255.255.255, Destination Port = 67 

 DHCP option 50: IP address 192.168.1.100 is requested 

 DHCP option 53: Message is DHCPREQUEST 

 DHCP option 54: IP address of DHCP server is 192.168.0.11 
 
In the DHCP Acknowledge phase, the server officially registers the assignment, and notifies the client of 
the configuration values: 
 

 Source Address  = 192.168.0.11, Source Port = 67 

 Destination Address = 255.255.255.255, Destination port = 68 

 DHCP option 01: Subnet Mask is 255.255.0.0 

 DHCP option 03: Default gateway is 192.168.0.1 

 DHCP option 06: IP addresses of DNS servers are 192.168.0.11 and 192.168.0.12 

 DHCP option 51: lease duration is 86400 seconds (1 day) 

 DHCP option 53: Message is DHCPACK 

 DHCP option 54: IP address of DHCP server is 192.168.0.11 
 
At this point, the client actually configures those values for its network interface, and can begin using 
the network. 
 
 
3.6.2 – Useful Commands Related to DHCPv4 
 
In Windows, there are some commands available in a DOS prompt box related to DHCPv4: 
 
 ipconfig /release  release assigned IPv4 address, deconfigure network 
 ipconfig /renew   do a new configuration request for IPv4 
 ipconfig /all   view all network configuration settings 
 
This is an example of the output from “ipconfig /all”: 
 
C:> ipconfig /all 

... 

Ethernet adapter Local Area Connection: 

 

   Connection-specific DNS Suffix  . : redwar.org 

   Description . . . . . . . . . . . : Realtek PCIe GBE Family Controller 

   Physical Address. . . . . . . . . : 00-22-15-24-32-9C 

   DHCP Enabled. . . . . . . . . . . : Yes 

   IPv4 Address. . . . . . . . . . . : 192.168.1.8(Preferred) 

   Subnet Mask . . . . . . . . . . . : 255.255.0.0 

   Default Gateway . . . . . . . . . : 192.168.0.1                                     

   DNS Servers . . . . . . . . . . . : 192.168.0.11 

                                       192.168.0.12 

   NetBIOS over Tcpip. . . . . . . . : Enabled 
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... 

 

 
3.7 – TCP/IPv4 Network Configuration 
 
Let’s assume our LAN has the following configuration: 
 
 Network Address: 192.168.0.0/16  (hence subnet mask = 255.255.0.0) 
 Default Gateway: 192.168.0.1 
 DHCPv4 Address: 192.168.0.11   
 DNS Server Address: 192.168.0.11, 192.168.0.12 
 Domain Name:  redwar.org 
 
Furthermore, assume the DHCPv4 server is correctly configured with this information, and is managing 
the address range 192.168.1.0 to 192.168.1.255 (and that some leases have already been granted). 
 
Any node connected to a network with TCP/IPv4 must have certain items configured, including: 
 

 IPv4 node address 

 Subnet mask (or equivalently, CIDR subnet mask length) 

 IPv4 address of default gateway 

 IPv4 addresses of DNS servers 

 Nodename 

 DNS domain name 
 
 
3.7.1 – Manual Network Configuration 
 
It is possible perform TCP/IPv4 configuration manually, either by editing ASCII configuration files, as in 
FreeBSD or Linux; or via GUI configuration tools, as in Windows. If you have understood the material in 
this chapter, it should be fairly easy to configure your node(s). In most cases, if you have ISP service, the 
ISP will give you all the information necessary to configure your node(s). 
 
Let’s configure a FreeBSD 7.2 node manually. Assign it the nodename “us1.redwar.org”, and the IP 
address 192.168.0.13. The interface we are configuring has the FreeBSD name “vr0”. 
 
You need to edit the following files (you will need root privilege to do this): 
 
/etc/rc.conf 
 
 ... 

 hostname=”us1.redwar.org” 

 ifconfig_vr0=”inet 192.168.0.13 netmask 255.255.0.0” 

 defaultrouter=”192.168.0.1” 

 ... 

 
/etc/resolv.conf 
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 domain redwar.org 

 nameserver 192.168.0.11 

 nameserver 192.168.0.12 

 
If you make these changes, then reboot, you can check the configuration as shown: 
 
$ ifconfig vr0 

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC> 

        ether 00:15:f2:2e:b4:1c 

        inet 192.168.0.13 netmask 0xffff0000 broadcast 192.168.255.255 

        media: Ethernet autoselect (100baseTX <full-duplex>) 

        status: active 

$ uname –n 

us1.redwar.org 

$ nslookup 

> server 

Default server: 192.168.0.11 

Address: 192.168.0.11#53 

Default server: 192.168.0.12 

Address: 192.168.0.12#53 

> exit 

 

$ netstat -rn 

Routing tables 

 

Internet: 

Destination        Gateway            Flags    Refs      Use  Netif Expire 

default            192.168.0.1         UGS         0        5    vr0 

... 

 

 

3.7.2 – Auto Network Configuration Using DHCPv4 
 
It is also possible for a node to be automatically configured if a DHCPv4 server (or relay agent) is 
available somewhere on the LAN (or possibly from the ISP). If you are deploying several nodes on a 
home network, it is likely that there is a DHCPv4 server in your home gateway / DSL modem.  
 
Let’s configure a FreeBSD 7.2 node automatically using DHCPv4. Assign it the nodename 
“us1.redwar.org”, and any IP address from DHCPv4. The interface we are configuring has the FreeBSD 
name “vr0”. 
 
You need to edit the following file (you will need root privilege to do this): 
 
/etc/rc.conf 
 
 ... 

 hostname=”us1.redwar.org” 

 ifconfig_vr0=”DHCP” 

 ... 
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If you make these changes, then reboot, you can check the configuration as shown: 
 
$ ifconfig vr0 

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC> 

        ether 00:15:f2:2e:b4:1c 

        inet 192.168.1.9 netmask 0xffff0000 broadcast 192.168.255.255 

        media: Ethernet autoselect (100baseTX <full-duplex>) 

        status: active 

$ uname –n 

us1.redwar.org 

$ nslookup 

> server 

Default server: 192.168.0.11 

Address: 192.168.0.11#53 

Default server: 192.168.0.12 

Address: 192.168.0.12#53 

> exit 

 

$ netstat -rn 

Routing tables 

 

Internet: 

Destination        Gateway            Flags    Refs      Use  Netif Expire 

default            192.168.0.1         UGS         0        5    vr0 
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Chapter 4 – The Depletion of the IPv4 Address Space 
 
Many people today are aware that the folks in charge of the Internet are starting to run low on 
addresses. Most of them are not aware that this is not the first time we’ve faced this, or just how low 
that pool of addresses is today. The majority of Internet users are either completely oblivious to what is 
going on and think that the Internet will go on like it has, forever. If they have heard any rumors about 
an address shortage they have a blind faith that the people in charge can simply work some magic and 
the problem will go away. Well, they did once, in the mid 1990’s (with NAT), but they are all out of tricks 
this time around. IPv4 is simply out of gas, and it is time to start using its successor, IPv6. 
 
 
4.1 – OECD IPv6 Report, March 2008 
 
The best study on this done to date (in my opinion) is in the OECD report presented at the OCED 
Ministerial Meeting on the Future of the Internet Economy, in Seoul Korea, 17-18 June, 2008. I was a 
speaker at the concurrent Korean IPv6 Summit. The full name of OECD is Organisation for Economic Co-
Operation and Development. It was established in 1961, and currently has 30 member nations, including 
most members of the EU, plus Australia, Canada, Japan, Korea, Mexico, New Zealand, Turkey, the UK 
and the US. It had a 2009 budget of EUR 320 million. Their goals are to: 
 

 Support sustainable economic growth 

 Boost employment 

 Raise living standards 

 Maintain financial stability 

 Assist other countries’ economic development 

 Contribute to growth in world trade 
 
Unlike the IETF or ISO, the OECD is not specifically concerned with technology. However, they have 
determined that the imminent exhaustion of the IPv4 address space will have a major impact on most of 
their goal areas, hence they did a major study, the results of which are presented in Ministerial 
Background Report DSTI/ICCP(2007)20/FINAL, “Internet Address Space: Economic Considerations in the 
Management of IPv4 and in the Deployment of IPv6”. The report is available free by download over the 
Internet (search for “OECD IPv6 Report”). You should actually read the entire report, but I will 
summarize the most important aspects of it in this chapter. 
 
Let me quote one paragraph from the Main Points section: 
 
“There is now an expectation among some experts that the currently used version of the Internet 
Protocol, IPv4, will run out of previously unallocated address space in 2010 or 2011, as only 16% of the 
total IPv4 address space remains unallocated in early 2008. The situation is critical for the future of the 
Internet economy because all new users connecting to the Internet, and all businesses that require IP 
addresses for their growth, will be affected by the change from the current status of ready availability of 
unallocated IPv4 addresses.” 
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As of this writing, in early 2010, only 8% of the addresses remain unallocated. The current best 
estimates are that the IANA address pool will be exhausted by July 2011, and all RIRs will exhaust their 
supply within six months after that (some potentially even earlier). 
 
Another key passage from this section follows: 
 
“As the pool of unallocated IPv4 addresses dwindles and transition to IPv6 gathers momentum, all 
stakeholders should anticipate the impacts of the transition period and plan accordingly. With regard to 
the depletion of the unallocated IPv4 address space, the most important message may be that there is 
no complete solution and that no option will meet all expectations. While the Internet technical 
community discusses optional mechanisms to manage IPv4 address space exhaustion and IPv6 
deployment and to manage routing table growth pre- and post- exhaustion, governments should 
encourage all stakeholders to support a smooth transition to IPv6.” 
 
“IPv6 adoption is a multi-year, complex integration process that impacts all sectors of the economy. In 
addition, a long period of co-existence between IPv4 and IPv6 is projected during which maintaining 
operations and interoperability at the application level will be critical. The fact that each player is 
capable of addressing only part of the issue associated with the Internet-wide transition to IPv6 
underscores the need for awareness raising and co-operation”. 
 
Basically, there is no solution for those wanting to remain with IPv4. It is going to take multiple years to 
make the transition. There are only two years left, so March 2010 is really the last possible date to begin 
a smooth and affordable introduction of IPv6. Any later start will involve unnecessary expense and crisis 
management, towards the end of the IPv4 lifetime. Such transitions are usually not done well when 
rushed. And once the addresses are gone, that’s it. 
 
The report acknowledges that in the early phases of a major technology transition such as this, there 
may be little or no incentive to shift to the new technology. However, once a critical mass of users 
adopting the new technology, there is often a tipping point after which adoption grows rapidly until it is 
widespread. In theory this tipping point is reached when the marginal cost, for an ISP or an organization, 
of implementing the next device with IPv4 becomes higher than the cost of deploying the next device 
with IPv4. For an ISP, there are costs associated with deploying IPv4 nodes such as the cost of obtaining 
the addresses themselves, the costs of designing and deploying network infrastructure that uses fewer 
and fewer public (globally routable) addresses (by using NAT). When these become higher than the cost 
of deploying IPv6, they will begin migration in earnest. Reaching this tipping point depends on a number 
of factors, including customer demand, opportunity costs, emerging markets, the introduction of new 
services, government incentives, and regulation. 
 
One of the key requirements for migrating to IPv6 is technical expertise in the subject. This is necessary 
to provide economies and companies with competitive advantage in the area of technology products 
and services, and the benefit from ICT-enabled innovation. Countries who are early adopters, and 
provide training and incentives for their companies to embrace it, or even help fund the necessary 
infrastructure (as in China) will have significant competitive advantages in years to come over countries 
that are laggards in this transition. 
 
Increasing scarcity of IPv4 addresses can raise competitive concerns in terms of barriers to new entry 
and strengthening incumbent positions. There has been much discussion over how to manage 
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previously allocated IPv4 addresses once the free pool has been exhausted. Will a black (or even a 
legitmate) market evolve for IPv4 addresses? Will companies that have more than they need be selling 
them on eBay? It’s possible that some companies might even be acquired in order to obtain a large 
number of addresses (as happened when Compaq bought Digital Equipment Corporation, and then 
again when HP bought Compaq). Today, you only borrow (lease?) addresses from an ISP for so long as 
you have service with that ISP. If you terminate that service, the addresses are reclaimed by the ISP for 
allocation to other customers. You don’t really own those addresses, so you can’t sell them. Even the ISP 
doesn’t own them, if an ISP goes out of business their address pool probably returns to the RIR they got 
them from. Some of these situations are not currently well defined, but they will be as the IPv4 address 
space nears exhaustion. Notably, the situation on the early Class A block allocations is not quite so well 
defined. Those blocks may be owned by those early adopter companies. 
 
There is also discussion of how existing and increasing use of NAT requires developers of network aware 
products and applications to build increasingly complex central gateways or NAT traversal mechanisms 
to allow clients who are in most cases, both behind NAT gateways. This is creating barriers to innovation, 
the development of new services, and the overall performance and stability of the Internet. 
 
There is a risk of some parts of the world deploying IPv6, while others continue running IPv4 with 
multiple layers of NAT. Such decisions would impact the economic opportunities offered by the Internet 
with severe repercussions in terms of stifled creativity and deployment of generally accessible new 
services. Also, there could be serious issues of interoperation between people in the IPv6 world and 
those left behind in the IPv4 world. This could lead to a fragmentation of the Internet. 
 
The five sections of the report cover the following topics: 
 

 Overview of the major initiatives that have taken place in Internet addressing to-date, and the 
parallel development of institutions that manage Internet addressing 

 Summary of proposals under consideration for management of remaining IPv4 addresses 

 Overview of the drivers and challenges for transitioning to IPv6 through a dual stack (IPv4 + 
IPv6) environment. It reviews factors that influence IPv6 adoption, drawing on available 
information. 

 Economic and public policy considerations and recommendations to governments 

 Lessons learned from several IPv6 deployments 
 
 
4.2 – OECD Follow-up Report, April 2010 
 
In April 2010, the OECD released a follow-up report to the IPv6 report mentioned above. It is called 
“Internet Addressing: Measuring Deployment of IPv6”. They still expect IPv4 addresses to run out in 
2012. As of March 2010, only 8% of the full IPv4 address space is available for allocation. Currently, IPv6 
use is growing faster than IPv4 use, albeit from a still small base. Several large-scale deployments are 
taking place or are in planning.  Some of the key findings, all as of March 2010 are: 
 

 5.5% of the networks on the Internet (1,800 networks) can handle IPv6 traffic 

 IPv6 networks have grown faster than IPv4-only networks since mid-2007 

 Demand for IPv6 address blocks has grown faster than demand for IPv4 address blocks. 
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 One out of five transit networks (i.e. networks that provide connections through themselves to 
other networks) handle IPv6. This means that Internet infrastructure players are actively 
readying for IPv6. 

 As of January 2010, over 90% of installed operating systems are IPv6 capable, and 25% of end 
users ran an operating system that enabled IPv6 by default (e.g. Windows Vista or Mac OS X). 
This percentage has probably increased since the release of Windows 7, but no measurement is 
available. 

 As of January 2010, over 1.45% of the top 1000 websites were available over IPv6, but as of 
March 2010 (when Google IPv6 enabled their websites) this jumped to 8%. 

 Over 4,000 IPv6 prefixes (address blocks) had been allocated. Of these 2,500 (60%) showed up 
as routed on the Internet backbone (were actually in use). 

 At least 23% of Internet eXchange Points explicitly supported IPv6 

 7 out of 13 DNS Root Servers are accessible over IPv6 

 65% of Top Level Domains (TLDs) had Ipv6 records in the root zone file 

 80% of TLDs have name servers with an IPv6 address 

 1.5 million domain names (about 1% of the total) had IPv6 DNS records 
 
Operators in the RIPE and APNIC service areas were given a survey in 2009. 
 

 7% of APNIC respondents claimed to have equal or more IPv6 traffic than IPv4 traffic 

 2% of RIPE respondents claimed to have equal or more IPv6 traffic than IPv4 traffic 

 Of those respondents not deploying IPv6, 60% saw cost as a major barrier 

 Of those respondents deploying IPv6, 40% considered lack of vendor support the main obstacle 
 

 

 
 

Routed IPv6 Prefixes, 2004 to 2009 
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IPv6 unique Autonomous Systems, 2003 to 2009 
 
 

 
Source: ITAC/NRO Contribution to the OECD, Geoff Huston and George Michaelson, data from end of year 2009. 

 

 
Since 2008, the ratio of routed IPv6 prefixes to IPv4 prefixes has climbed from 0.45% to 0.8%, which 
indicates that the number of routed IPv6 prefixes is increasing more rapidly than that of routed IPv4 
prefixes. The ratio of IPv6 to IPv4 AS entities actively routing went from about 3.2% in 2008 to 5.5% in 
2010. 
 
The compound annual growth rate from 24 February 2009 to 5 November 2009 for dual stack ASes was 
52%, for IPv6-only ASes was 13%, and for IPv4-only ASes was 8%. At year end 2009, there were 31,582 
ASes using IPv4-only, there were 1806 ASes using dual stack, and there were 59 ASes using IPv6-only. 
 
One trend is that service providers, corporations, public agencies and end-users are using IPv6 for 
advanced and innovative activities on private networks. IPv6 is also being used in 6LoWPAN (IPv6 over 
Low power Personal Area Networks, as specified in RFC 4944, “Transmission of IPv6 Packets over IEEE 
802.15.4 Networks”, September 2007. 
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4.3 – How IPv4 Addresses Were Allocated in the Early Days 
 
In the early days, before IANA and the RIRs were created, IPv4 addresses were actually allocated 
manually by a single individual, Jon Postel. He never dreamed how large the Internet would grow, or 
that it would be a worldwide phenomenon that had a major impact on most world economies. He is the 
one responsible for allocating large chunks (“Class A” blocks) to a few early adopters (e.g. HP, Apple, and 
M.I.T.) Unfortunately, those allocations are very difficult to undo today, so about 1/3 of all the addresses 
allocated in the U.S. belong to less than 50 organizations. The IANA now just considers those legacy 
allocations, and has tried to do the best they could with the address space remaining at the time they 
took over allocation. 
 
 
4.3.1 – Original “Classful” Allocation Blocks 
 
The first 50% of the full IPv4 address space (0.0.0.0 to 127.255.255.255) was divided up into 128 “Class 
A” blocks (now known as “/8” or “slash-8” blocks). Each of these contained 224-2, or some 16.8 million 
usable addresses. Here is a list of some of the lucky organizations that own these blocks today, either 
from the original allocation or by buying other companies that owned them. 
 
 General Electric   3.x.x.x  U.S. DoD DISA   22.x.x.x 

Level 3 Communications 4.x.x.x   U.K. Ministry of Defense 25.x.x.x 
 U.S. Army Info Systems Center 6.x.x.x   U.S. DoD DISA   26.x.x.x 

(formerly DoD, now ARIN) 7.x.x.x   U.S. DoD DSI-North  28.x.x.x 
 Level 3 Communications 8.x.x.x   U.S. DoD DISA   29.x.x.x 
 IBM    9.x.x.x   U.S. DoD DISA   30.x.x.x 
 U.S. DoD Intel Info Systems 11.x.x.x  AT&T Global Network Svcs 32.x.x.x 
 AT&T Worldnet   12.x.x.x  U.S. DoD DLA Sys Auto Ctr 33.x.x.x 
 Xerox Corp.   13.x.x.x  Halliburton   34.x.x.x 
 HP    15.x.x.x  InterOp Show   45.x.x.x 
 DEC (now HP)    16.x.x.x  Bell-Northern (now Nortel) 47.x.x.x 
 Apple Computer  17.x.x.x  Prudential Insurance  48.x.x.x 
 Mass. Inst. Of Technology 18.x.x.x  E.I. DuPont de Nemours  52.x.x.x 
 Ford Motor Company  19.x.x.x  Daimler AG   53.x.x.x 

Computer Sciences Corp 20.x.x.x  U.S. DoD Network Info Ctr 55.x.x.x 
 DoD DISA DDN-RVN  21.x.x.x  U.S. Postal Service  56.x.x.x 
 
Another 25% of the full address space (128.0.0.0 to 191.255.255.255) was divided up into 16,384 “Class 
B” blocks (now known as “/16” blocks). Each of these contained 216-2, or 65,534 usable addresses.  
 
Another 12.5% of the full address space (192.0.0.0 to 224.255.255.255) was divided up into about 2.1 
million “Class C” blocks (now known as “/24” blocks). Each of these contained 28-2, or 254 usable 
addresses. 
 
Another 6.25% of the full address space (224.0.0.0 to 239.255.255.255) was reserved for multicast 
(these are known as Class D addresses). There is no way to “recover” any of this address space. 
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The final 6.25% of the full address space (240.0.0.0 to 255.255.255.255) was reserved for future use, 
experimentation and limited broadcast. These are known as Class E addresses. These addresses cannot 
be “recovered” without modifications to essentially every router in the world (most routers block them 
by default – in many routers this is not even configurable). 
 
The subblock of Class E from 255.0.0.0 to 255.255.255.255 is actually used for “limited broadcast” 
(limited because it will not cross routers). A packet sent to any of these addresses will be received by all 
nodes on your LAN. Of these, normally only the address 255.255.255.255 is used. There is no broadcast 
in IPv6 (although there is a multicast address that has much the same effect). 
 
The U.S. Deptartment of Defense has 10 “/8” blocks, for about 168 million addresses. This is almost 4% 
of the total IPv4 address space. One entire “/8” block (127.x.x.x) has only one address used, which is 
127.0.0.1 (the IPv4 “loopback” address, used to address your own node). A small block at 
169.254.0.0/16 is reserved for IPv4 Link Local usage (similar to IPv6 link-local addresses). For details, see 
RFC 5735, “Special Use IPv4 Addresses”, January 2010. 
 
One “/8” block (10.0.0.0/8), one “/12” block (172.16.0.0/12) and one “/16” block (192.168.0.0/16) were 
reserved for use as “private” addresses by RFC 1918, “Address Allocation for Private Internets”, February 
1996. These addresses can be used by any organization for any internal network, but should never be 
routed onto the Internet (although in practice you can sometimes find these addresses on the backbone 
due to misconfigured routers). These would correspond to internal phone “extensions” such as 101, 
102, etc. Every company with a PBX might use that same set of extensions. 
 
As of 4 June 2010, only 16 of the possible 256 “/8” blocks (about 6.25% of the full address space) are still 
unallocated. Here is a map of the status of all 256 “/8” blocks. By September 2011, (or earlier) there 
won’t be any dots left. All the blocks with dots (unallocated “/8”s) in the chart today will be allocated to 
one of the RIRs (ARIN, RIPE, APNIC, LACNIC or AfriNIC). 
 
 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 

000 R AP RN L L . L L-AR L L 

010 R L L L AP L L L L L 

020 L L L . AR L L AP L L 

030 L RN L L L L . . L . 

040 L AF . L-AP L L RN L L . 

050 AR L L L L L L L AP AP 

060 AP AP RN AR AR AR AR AR AR AR 

070 AR AR AR AR AR AR AR RN RN RN 

080 RN RN RN RN RN RN RN RN RN RN 

090 RN RN RN RN RN RN AR AR AR AR 

100 . . . . . . . AR AR RN 

110 AP AP AP AP AP AP AP AP AP AP 

120 AP AP AP AP AP AP AP R L-AR L-AR 

130 L-AR L-AR L-AR L-AP L-AR L-AR L-AR L-AR L-AR L-AR 

140 L-AR L-RN L-AR L-AR L-AR L-RN L-AR L-AR L-AR L-AR 

150 L-AP L-RN L-AR L-AP L-AF L-AR L-AR L-AR L-AR L-AR  

160 L-AR L-AR L-AR L-AP L-AR L-AR L-AR L-AR L-AR L-AR 

170 L-AR L-AP L-AR AR AR AP RN LA RN . 

180 AP LA AP AP AR . LA LA L-RN LA 

190 LA L-LA L-AR RN RN RN L-AF AF L-AR AR  
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200 LA LA AP AP AR AR AR AR AR AR 

210 AP AP RN RN L L AR RN AP AP 

220 AP AP AP AP R-MC R-MC R-MC R-MC R-MC R-MC 

230 R-MC R-MC R-MC R-MC R-MC R-MC R-MC R-MC R-MC R-MC 

240 R-FU R-FU R-FU R-FU R-FU R-FU R-FU R-FU R-FU R-FU 

250 R-FU R-FU R-FU R-FU R-FU R-FU 

 

Key and Analysis 

 

AR ARIN allocated   33 72 28.13% (ARIN total) 

L-AR Legacy, admin by ARIN  39 

AP APNIC allocated   38 44 17.19% (APNIC total) 

L-AP Legacy, admin by APNIC   6 

RN RIPE NCC allocated  33 37 14.45% (RIPE total) 

L-RN Legacy, admin by RIPE NCC  4 

LA LACNIC allocated    8  9  3.52% (LACNIC total) 

L-LA Legacy, admin by LACNIC   1 

AF AfriNIC allocated    2  4  1.56% (AfriNIC total) 

L-AF Legacy, admin by AfriNIC  2  

 

L Legacy, early allocation   39 39 15.23% (Legacy total) 

R Reserved     3  3  1.17%  

R-MC Reserved, Multicast  16 16  6.25% 

R-FU Reserved, Future Use  16 16  6.25% 

. Unallocated    16 16  6.25% (Unallocated) 

          ---   ---   ------- 

          256   256   100.00% 

 
Almost all of the “Legacy, early allocation” blocks are in the U.S., so ARIN’s real share of the total IPv4 
address space is over 40% (for less than 5% of the world’s population). 
 
You can check the official status of the remaining allocations at any time, at: 
 

http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml 

 
 
4.3.2 – Classless Inter-Domain Routing (CIDR) 
 
The original allocation block sizes (Classes A, B & C) did not fit all organizations. For many organizations, 
even the smallest block (Class C) was too big. If we had stuck with the original allocation block sizes, we 
would have run out of addresses around 1997. When this was realized, the IETF introduced Classless 
Inter-Domain Routing as defined in RFC 1518, “An Architecture for IP Address Allocation with CIDR”, 
September 1993; and RFC 1519 “Classless Inter-Domain Routing (CIDR): An Address Assignment and 
Aggregation Strategy”, September 1993. CIDR allowed allocation blocks to be split along any bit of the 
32 possible bit locations, not just at 24, 16 and 8 bits. Some useful CIDR allocation block sizes are: 
 
 Size Subnet Mask  Number of usable addresses in block 

 

 /30 255.255.255.252 2 

 /29 255.255.255.248 6 

 /28 255.255.255.240 14 

 /27 255.255.255.224 30 
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 /26 255.255.255.192 62 

 /25 255.255.255.128 126 

 /24 255.255.255.0 254 (old Class C) 

 /23 255.254.0.0  510 

 /22 255.252.0.0  1,022 

 /21 255.248.0.0  2,046 

 /20 255.240.0.0  4,094 

 /19 255.224.0.0  8,190 

 /18 255.192.0.0  16,382 

 /17 255.128.0.0  32,766 

 /16 255.255.0.0  65,534 (old Class B) 

 /8 255.0.0.0  16,777,214 (old Class A) 

 
CIDR allows a closer fit to actual organization size than the old classful “3 sizes fit all” scheme. However, 
each allocated block requires an entry in the core routing tables. As we allocate smaller and smaller 
blocks, the number of entries in the core routing tables is growing very rapidly. Many things are 
beginning to go wrong as we get closer and closer to an empty barrel.  
 
In the mid 1990’s, there were steps taken (NAT and Private Addresses) to further limit the number of 
addresses being allocated to each organization. NAT was only ever envisioned by its creators as a “quick 
fix” that would buy us a few years to really solve the problem. They understood all the problems NAT 
would cause, and were willing to live with them for a short time, when the alternative was to run out of 
IPv4 addresses somewhere around 1997. For the real long-term fix, the IETF also began working on the 
next generation Internet Protocol with a much larger address space. That next generation Internet 
Protocol is complete, mature and available to deploy today. It is called IPv6. 
 
 
4.4 – Problems Introduced by Customer Premise Equipment NAT (CPE NAT) 
 
Since the mid 1990’s we have been living with problems created by the introduction of Network Address 
Translation doing conventional “hide mode” (Cone) NAT at the Customer Premise (CPE NAT). These 
include: 
 

 Difficulty for internal nodes to accept incoming connections, for VoIP (SIP), Peer-to-Peer (P2P), 
running your own mail (SMTP), web (HTTP/HTTPS), File Transfer (FTP/SSH) or other servers. 

 Problems with protocols that embed IPv4 addresses in packet transmissions (SIP, many games) 

 Problems with protocols that detect tampering to IP and/or TCP/UDP header fields (e.g. IP 
addresses, port numbers), such as IPsec Authentication Header (AH). 

 Problems due to advances in web technology (primarily Web 2.0 / AJAX) that use large numbers 
of connections, each over a different port, such as iTunes and Google Maps. This can be as high 
as 200 ports per application. Since NAPT systems share the 65,536 possible ports associated 
with a single “real” IPv4 address among the nodes hidden behind each address, each internal 
user on average can use at most 65,536 divided by the number of users behind that address. In 
enterprise networks, this might (until recently) have been thousands or tens of thousands of 
nodes behind one real address. For 1,000 nodes, on average each user could use no more than 
65 ports. For 10,000 nodes, on average each user could use no more than 6 ports. To allow each 
user up to 200 ports, no more than 300 users should be hidden behind each IPv4 address. 
Currently, the average number of ports used per user is actually quite low (less than 10), but this 
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is expected to grow rapidly as more users begin using Web 2.0 / AJAX type applications. If 
possible, NAT schemes should use ports on a first come, first served basis, rather than allocating 
1/n of the possible ports to each node. 

 Difficulty of tracking abuse to specific users behind a NAT. This requires keeping large amounts 
of information including source IP address, destination IP address, port number(s) and accurate 
time stamps for every connection. This may have to be kept for up to one year. A year’s worth of 
such data for a single user can be tens of gigabytes to terabytes in size. Multiplied by the 
number of users, this is a staggering amount of storage that ISPs are required to keep. Hackers 
love to “hide behind” NAT gateways. 

 
Essentially, private IP addresses behind “hide mode” NAT are good only for outgoing connections using 
the simplest connectivity paradigms (e.g. client to server, using a small total number of ports per user).  
 
It is possible to allow at most one internal node to accept incoming connections on a given port (e.g. 25 
for SMTP, 80 for HTTP, etc) for a given real IPv4 address, using port forwarding. For example, your NAT 
gateway can be configured to forward any incoming connection to its real IPv4 address on port 25, to 
the private address of a single internal node where an e-mail server is running. The gateway could also 
forward incoming connections to its real IPv4 address on port 80 to the same or a different internal 
node’s private address where a web server is running. This limits the entire LAN (or that part of it behind 
a given real IPv4 address) to a single server for any given port number. This still translates the 
destination IPv4 address on the way in, and the source IPv4 address on the way out (but not port 
numbers), still causing many of the problems listed above. 
 
Some firewalls (or other NAT gateways) in addition to “hide mode” (Cone) NAT for outgoing 
connections, and port forwarding, also support bidirectional NAT (called BINAT, symmetric NAT, and “1 
to 1” NAT among other names). This type of NAT makes a two way address translation between a single 
real IP address and a single private internal address (hence “1 to 1”). The full 65,536 possible ports may 
be used on the internal node, but a distinct real IPv4 address is required for each such NAT mapping. 
This would allow deployment of multiple web servers within a LAN, or an easy way to provide access to 
many services on a single node (e.g. a Windows Server based computer). This still translates the 
destination IP address of packets on the way in, and the source IP address of packets on the way out 
(but not port numbers) still causing many of the problems listed above. In addition it uses up one real 
address per internal server, and requires addressing the “missing ARP” problem (caused by the fact that 
there is no physical node at the external address to respond to ARP queries). This can be solved by 
configuring a static ARP for the external IPv4 address on the NAT gateway, or various other solutions. 
This is one of the most difficult and least widely understood aspects of managing a NAT gateway. 
 
There are also various NAT Traversal protocols (STUN, TURN, SOCKS, NAT-T, etc) that allow incoming 
connections to internal nodes that have only private addresses (without any port forwarding or BINAT 
support in the NAT gateway). These typically require an outside server to assist. STUN uses the outside 
server only to establish the connection, while TURN also routes all traffic through the outside gateway. 
All involve encapsulating traffic over UDP, which complicates error detection and recovery, as well as 
supporting the “connection oriented” nature of TCP traffic. All require extensive modifications to the 
source code of clients, which is quite complex and very specific to the NAT traversal algorithm used. 
Often the external servers used are not under control of the network, leading to security issues. One of 
the most popular network applications (Skype) uses standard UDP encapsulated “hole punching” 
traversal, which causes many security issues. 
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RFCs related to NAT Traversal 
 

 RFC 1928, “SOCKS Protocol Version 5”, March 1996 (Standards Track) 

 RFC 3489, “Simple Traversal of User Datagram Protocol (UDP) Through Network Address 
Translators (NATs)”, March 2003 (Standards Track, Obsoleted by RFC 5389) 

 RFC 3947, “Negotiation of NAT-Traversal in the IKE”, January 2005 (Standards Track) 

 RFC 3948, “UDP Encapsulation of IPsec ESP Packets”, January 2005 (Standards Track) 

 RFC 5389, “Session Traversal Utilities for NAT (STUN)”, October 2008 (Standards Track) 

 RFC 5766, “Traversal Using Relays Around NAT (TURN): Relay Extensions to Session Traversal 
Utilities for NAT (STUN)”, March 2010 (Standards Track, awaiting final approval) 

 
 
4.5 – Implementing NAT at the Carrier: Carrier Grade NAT (CGN) or Large Scale NAT (LSN) 
 
As we progress from the “end times” for IPv4, to “life after IPv4” (beyond the depletion date for IPv4), 
those who have not already migrated to IPv6 will face even greater problems, as ISPs deploy Carrier 
Grade NAT or Large Scale NAT solutions in their networks, as opposed to at the Customer Premise (CPE 
NAT). The reason for this is to try to make optimal use of an even smaller number of real IPv4 addresses 
than is possible with CPE NAT. Essentially the ISP will have a very small pool of real IPv4 address (less 
than the number of customers). They will share single real IPv4 addresses across customers. This will 
make the problems associated with CPE NAT dramatically worse. There is excellent coverage of the 
issues associated with deploying NAT in the carrier in draft-ford-shared-addressing-issues-02 (2010-03-
08). The schemes discussed in this Internet Draft include: 
 

 Dual-Stack Lite, draft-ietf-softwire-dual-stack-lite 

 Carrier Grade NAT (CGN), draft.nishitani-cgn 

 NAT64, draft-ietf-behave-v6v4-xlate-stateful 

 IVI, draft-ietf-behave-v6v4-xlate 

 Address+Port (A+P) proposals, draft-ymbk-aplusp, draft-boucadair-port-range 

 Scalable Multihoming  across IPv6 – Stateless Address Mapping, draft-despres-sam 
 
Of these, only Dual-Stack Lite makes dual stack service available to users. It provides direct IPv6 service 
(no NAT, no tunneling). It provides IPv4 service tunneled over IPv6 with only one level of NAT44 (which 
takes place at the carrier). Customers will get only private IPv4 addresses. It is possible that some ISPs 
may provide a few precious “real” (globally routable) IPv4 addresses to business customers at a 
significant price premium (all the market will bear). All of the NAT schemes extend the address space by 
adding port information. They differ in the way they manage the port value.  
 
With CPE NAT, a given real IPv4 address covered only one legal entity (a home, a company, etc). With 
carrier based NAT, multiple legal entities will be behind most real IPv4 addresses, which will vastly 
complicate the legal issues (such as tracking down a source of network abuse or being able to prove who 
really did something).  
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You will see the terms NAT444 and NAT464 in discussions of carrier based NAT. The existing NAT that is 
widely deployed now called is NAT44 (NAT from IPv4 to IPv4). There is also NAT46 (NAT from IPv4 to 
IPv6 and NAT64 (NAT from IPv6 to IPv4). 
 
NAT444 essentially leaves the CPE NAT44 (the existing one layer NAT that is widely deployed today) 
intact at the Customer Premise, while the carrier deploys a second layer of NAT44 before it ever reaches 
the customer. It is really just two NAT44 mechanisms in series. The CPE NAT44 will map the private 
addresses supplied from the carrier NAT44 onto yet another set of internal private addresses. The 
transport from carrier to customer is also over IPv4. The difference from existing systems is that today 
the CPE NAT usually has one real IPv4 address which it shares among multiple internal nodes. In NAT444 
systems, there won’t be even one real IPv4 address at the customer premise. It will be quite difficult 
(and probably very expensive) to host servers with public IPv4 addresses (e.g. web, mail, VoIP) at 
customer sites – most will have to be hosted at a collocation facility. 
 
NAT464 is similar, but involves doing one layer of NAT46 (from IPv4 to IPv6) at the carrier, followed by a 
second layer of NAT64 (from IPv6 to IPv4) at the customer premise. This allows the transport from 
carrier to customer to be over IPv6, which is a good thing, but involves upgrading or replacing all 
Customer Premise equipment to ones that are NAT64 compliant (few are today). Also, address 
translation between IP families (IPv4 to IPv6 and IPv6 to IPv4) has even more problems than address 
translation within a single IP family (only IPv4 to IPv4 – there is no IPv6 to IPv6 NAT!). 
 
For an analogy, imagine deploying nested telephone PBXes. There would be an outer PBX, with a real 
telephone number, and behind that other PBXes with internal extensions from the outer PBX. Behind 
each internal PBX, you would have sets of internal phones. To call an internal phone, you would dial the 
real phone number of the outer PBX, have to do something to select an internal PBX (dial the internal 
PBX’s extension number?) then once connected to the internal PBX, you would need to interact with it 
to select an internal phone (e.g. dial the first three characters of the phone owner’s name). This is the 
kind of complexity that IPv4 applications will now have to cope with. It will be much simpler to just 
convert them directly to IPv6. 
 
In either case (NAT444 or NAT464), there are some protocols that will work across one layer of NAT, but 
fail when there is more than one layer of NAT. Both NAT444 and NAT464 will introduce these kinds of 
issues, since both involve at least two layers of NAT. Some home or small business users may 
unintentionally introduce even more layers of NAT due to lack of understanding, for example by 
deploying a firewall/NAT box behind a modem/NAT gateway. 
 
The following problems are made worse by Carrier Grade NAT compared even to CPE NAT. Some affect 
only the end user, some affect third parties (e.g. law enforcement), and many affect both. 
 

 The number of ports available per node will be even less, so Web 2.0 / AJAX applications such as 
iTunes and Google Maps will fail in unpredictable ways, especially with schemes that divide the 
available ports into equally sized port ranges per customer 

 Incoming port negotiations may fail – e.g. Universal Plug and Play (UPnP) 

 Incoming connections to Well-Known Ports will not work (e.g. SMTP, HTTP, SIP, etc) 

 Reverse DNS pretty much breaks down completely 

 Inbound ICMP will fail in most cases 
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 Security issues are even worse than with CPE NAT 

 Packet fragmentation requires special handling 

 There are more single points of failure and decreased network stability 

 Port randomization is affected (especially in schemes that restrict ports to ranges) 

 Penalty Boxes no longer work 

 Spam blacklisting will affect many other nodes that use the same address 

 Geo-location services may not be reliable or particularly specific 

 Load balancing algorithms are impacted 

 Authentication mechanisms are impacted 

 IPv6 transition mechanisms will be affected (Dual-Stack Lite is the exception here) 

 Frequent keep-alives will reduce battery life in mobile nodes 
 
Applications that had to be modified to support NAT Traversal to work through NAT44 will have to be 
modified once again, with even more complicated schemes, to traverse multiple layers of NAT. 
Application Layer Gateway workarounds now have to be implemented at the Carrier, not just at the 
Customer Premise. ALGs that have to deal with port-range restrictions will have an even harder job. 
 
Blocking incoming access to services based on IPv4 address will likely affect many “innocent bystanders” 
that happen to share the same real IPv4 address. One obvious example is spam blacklists. A less obvious 
example is that some secure devices restrict access by source IP address (only this node can connect to 
my firewall). Now, many other nodes, even in different organizations, will be sharing that same IP 
address legitimately, so may be able to access such nodes. 
 
With reverse DNS, you publish the node name associated with a given IP address. With CPE NAT this 
affected many nodes, but this will be completely meaningless for nodes behind Carrier based NAT. 
There is no way to publish thousands of node names for a single IP address, nor is there any way for 
someone asking for the reverse lookup to interpret the response correctly. 
 
IPv6 transition mechanisms such as 6to4 will not work at all behind Carrier based NAT, but Teredo 
might. Likewise IPv4 Multicast and Mobile IPv4 will have to be modified extensively for Carrier based 
NAT. 
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Chapter 5 – TCP/IPv6 Core Protocols 
 

This chapter introduces the new concepts and technical specifics of TCP/IPv6, the foundation of the 
Second Internet. Since IPv6 is based heavily on TCP/IPv4, the approach will be to describe the 
differences between the two. The subchapter headings are intentionally similar to those in Chapter 3, to 
allow you to compare the old and the new, topic by topic. Again, there is no intent to be comprehensive. 
There is a lot of content available on all aspects of IPv6, listed in the bibliography, and/or available 
online. The ultimate references are the RFCs, so this chapter includes pointers to the relevant ones, for 
those who want to drill deeper on specific topics. 
 
In other chapters we will discuss topics such as advanced aspects of IPv6 (IPsec, Mobile IPv6),  the new 
things that TCP/IPv6 makes possible, who is involved in making it happen, and how we get from the First 
Internet to the Second Internet (migration). This chapter covers the core protocols of IPv6. 
 
 
5.1 – Network Hardware 
 
Essentially the same network hardware that was used to deploy the First Internet is being used to 
deploy the Second Internet, with some notable exceptions, primarily hardware that implements things 
at the Internet Layer or above, such as smart (“Layer 3”) switches, routers and firewalls. Also DNS and 
DHCP servers must be updated or replaced with ones that support TCP/IPv6 (more typically both 
TCP/IPv4 and TCP/IPv6, or “dual stack”). As TCP/IPv6 is deployed, Virtual Private Networks (VPNs) will 
likely move away from “SSL/VPN” to IPsec based VPNs, which is the only IETF approved technology for 
VPNs. Unfortunately IPsec is incompatible with NAT, which is now endemic in the First Internet. VoIP 
and IPTV appliances will probably be upgraded to (or replaced with) TCP/IPv6 based systems. Any device 
with TCP/IP hardware acceleration (such as in high end routers) will probably need to be redesigned or 
replaced. Simply upgrading the firmware will not be sufficient on such products. There are some routers 
that only have hardware acceleration for the IPv4 stack, which has led some people to think there are 
performance issues with IPv6. Already a number of hardware acceleration chips that support both IPv4 
and IPv6 are available and are being used in new product designs. 
 
The hardware of most nodes does not need to change, especially client and server computers. 
Replacement or upgrade of the operating system and applications is all that is needed. The good news is 
that almost all operating systems and many network applications that run on client computers are 
already fully compliant with TCP/IPv6, and those are widely deployed. Those that aren’t yet compliant 
can be upgraded or configured to support it with very reasonable effort and cost. Many server 
applications (especially open source ones) are already compliant as well. Virtually everything Microsoft 
makes fully supports TCP/IPv6 today. For client computers, Windows Vista and Windows 7 have very 
complete support. Windows XP has some support, but is missing some key features (like GUI 
configuration of IPv6 addresses, and DNS queries over IPv6). My company supplies free tools for 
Windows XP GUI IPv6 configuration, and a Windows XP DHCPv6 client. Go to www.infoweapons.com 
(downloads) for details. For server computers, Windows Server 2008 and Exchange Server 2007 (and 
most other server software since 2007) have full support for TCP/IPv6. Most Open Source operating 
systems (Linux, FreeBSD, OpenBSD and NetBSD) have had full support for TCP/IPv6 for many years. Most 
open source network applications (Apache, Nagios, Postfix, Dovecot, etc) also have full support 
(although in some cases, documentation may be hard to find). 
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NICs do not need to change unless they have IPv4 specific hardware acceleration, and even those will 
typically run TCP/IPv6 with no problem, but the IPv6 part won’t be accelerated (it will run at “software” 
performance levels, in terms of packets or bytes processed per second). There are already many chips 
available to build hardware accelerated NICs that fully support both TCP/IPv4 and TCP/IPv6, so soon, 
even NICs with hardware acceleration will be no problem. They will accelerate IPv4 and/or IPv6 traffic. 
For the most part, NICs work at the Link Layer, hence are IP version agnostic (except for hardware 
acceleration). 
 
Existing Wi-Fi NICs are also IP version agnostic (they work at the Link Layer), and every one I’ve tried has 
worked with IPv6 with no upgrades or workarounds required. Wi-Fi Access Points are another matter, 
because usually they include higher layer functionality such as IPv4 routing, often including IPv4 NAT 
and a DHCPv4 server. Even here, there is a simple workaround. Most Wi-Fi access points have a “WAN” 
connector which is the input to the NAT gateway, and one or more “LAN” connectors that are on the 
client side of the NAT gateway. The LAN connectors are intending to plug in wired client nodes, which 
are peers to the wireless client nodes (both wired and wireless client nodes obtain configuration 
information and translated IP addresses from the DHCPv4 server and NAT gateway built into the Wi-Fi 
access point). Of course the existing IPv4 routing, IPv4 NAT and DHCPv4 in such devices are not 
compatible with TCP/IPv6. There will be dual stack Wi-Fi Access Points available soon from companies 
like D-Link, but the majority of products available today do not have routing, firewall or DHCP support 
for IPv6. 
 
However, if you plug the cable from your ISP DSL modem (or from a larger home wired network) into 
one of the LAN connectors on your Wi-Fi Access Point, instead of into the WAN connector as you are 
supposed to, you can simply ignore the IPv4 specific parts of the Wi-Fi access point. The actual Wi-Fi 
transmitter part is IP agnostic, and if there is both TCP/IPv4 and TCP/IPv6 on the feed you connect, they 
will both be broadcast on wireless, and all existing nodes with Wi-Fi NICs will receive it (assuming each 
OS supports IPv6 and you have configured it). Of course, if you want your Wi-Fi nodes to obtain IPv4 
addresses automatically, you must have a DHCPv4 server somewhere in your network (properly 
configured). Your Wi-Fi Access Point is no longer performing this function. Likewise if you want Wi-Fi 
clients to obtain IPv6 addresses through stateless auto configuration, there must be a Router 
Advertisement Daemon in your network (just as for wired IPv6). If your wireless node has a DHCPv6 
client, and you have a DHCPv6 server in your network, stateful auto configuration will work over Wi-Fi as 
well. Of course you can manually configure IPv6 addresses for Wi-Fi nodes just as you can with wired 
nodes. No NAT is required for IPv6. For IPv4, no NAT will be performed in the Wi-Fi Access Point, so if 
you need it, it must be performed at the outside gateway (for example, a wired DSL modem from your 
ISP). Your wireless nodes will be peers to your wired nodes. All of them (wired and wireless) will get 
addresses from the same DHCPv4 pool (if you use DHCP) and all will be in the same subnet. Normally if 
you connected a Wi-Fi gateway with NAT inside an existing NATTED network, your wireless nodes would 
be behind two levels of NAT, which can cause some problems.  
 
You will also find that some consumer devices that support Wi-Fi already have support for IPv6, such as 
certain Nokia phones and any phone based on Microsoft Mobile (Samsung Omnia, HTC, etc). It’s kinda 
cool to deploy dual stack Wi-Fi and show people the dancing turtle at www.kame.net on your phone. 
With most of today’s phones, however, the only thing that works over IPv6 today (if anything) is Wi-Fi  
Internet access, not the voice traffic or “Internet over wireless” service. In theory you could add a dual 
stack softphone (VoIP client) and do voice communications over IPv6, but only via the Wi-Fi connection 
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through a Wi-Fi Access Point connected to the main Internet, not over your wireless telephone carrier’s 
Internet service via WAP, GPRS, EDGE , HSDPA,  or whatever else they provide. Someday even these 
services will be dual stack (probably primarily HSDPA). 
 
Soon there will be dual stack Wi-Fi Access Points that fully support routing for IPv4 and IPv6, NAT for 
IPv4, and a Router Advertisement Daemon to enable IPv6 stateless auto configuration. D-Link in Taiwan 
is working on those now, and they should be on the market shortly. 
Network cables are totally IP version agnostic. You will not need to rewire you network just for IPv6. 
 
All conventional (“layer 2”) hubs and switches are IP version agnostic, although “layer 3” features of 
some switches (such as Web management, SNMP, and VLANs) must be upgraded to support IPv6. In 
most cases, this will be possible simply with new downloaded firmware. No hardware changes are 
needed (assuming there is sufficient RAM and ROM to handle the more complex firmware). Contact 
your switch vendor and demand that they add support for IPv6. There are already a few layer 3 switches 
on the market that support IPv6. I have an SMC 8848M 48-port Gigabit managed switch in my home 
network that has quite a bit of IPv6 support, including web management over IPv6, IPv6 based VLANs, 
SNMP over IPv6, etc. Unfortunately, traffic statistics do not breakout IPv4 and IPv6 traffic, just the total 
is reported. D-Link also recently announced a dual stack smart switch series. They are already IPv6 
Ready Gold certified. For details, search for their DGS-3627 XSTACK Managed 24 port Gigabit Stackable 
L3 Switch.  
 
Many enterprise grade routers and firewalls already support TCP/IPv6, although in some cases you 
must pay extra for the IPv6 functionality. Cisco routers require “Advanced IP Services” for IOS, usually at 
additional cost, before IPv6 works. For example, the Cisco 2851 router ($6495) includes only the base 
IOS (no IPv6 support). The Advanced IP Services Feature Pack for it is an additional $1700 (all prices list). 
When buying or considering using Cisco Routers for use in IPv6 networks, make sure they already 
include Advanced IP Services, or include the additional cost of the Feature Pack.  
 
Home network gateways that support TCP/IPv6 are further behind, but coming soon, especially from 
Asian vendors, such as D-Link. A typical one will have all the features of existing IPv4 based gateways, 
plus 6in4 tunneling (to tunnel in IPv6 from a virtual ISP), a Router Advertisement Daemon (to enable 
stateless auto configuration), and firewall rules for IPv6 traffic. They should also be able to accept direct 
(as opposed to tunneled) IPv6 service, for when dual stack ISP service becomes more widely available. 
Their DNS relay should support DNS over both IPv4 and IPv6. More advanced gateways might include a 
DHCPv6 server.  
 
Note that some DSL or cable modems also include IPv4 firewall functionality. Of course this will not 
allow you to control IPv6 traffic. Therefore, if you are connecting your LAN to the IPv6 Internet, there 
must be IPv6 firewalling somewhere, possibly in a 6in4 tunnel endpoint that is routing IPv6 traffic into 
your LAN. A Dual Stack gateway firewall may include routing to accept incoming “direct” IPv6 service 
and/or a 6in4 endpoint to accept incoming “tunneled” IPv6 service, together with both IPv4 and IPv6 
filtering rules, and a Router Advertisement Daemon to support stateless auto configuration for the 
internal nodes that support IPv6. My company makes an easy to use dual stack firewall with all of these 
features, and an intuitive GUI administrative interface (SolidWall). There are several such products on 
the market today, in addition to open source projects you can install on Linux or FreeBSD. 
 
You can find out more about D-Link’s IPv6 compliant products at: 
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   http://www.dlink.com/business/ipv6/ 
 
Most IP Phones in use today do not support TCP/IPv6, but some new models (including ones from Snom 
in Germany and Moimstone in Korea) do support it. Cisco supports IPv6 on a number of their recent 
phones, including the 7906G, 7911G, 7931G, 7941G/GE, 7942G, 7945G, 7961G/GE, 7962G, 7965G, 
79770G, 7971G/GE, and 7975G. Most of the older Cisco IP phones currently in use do not support IPv6, 
and their firmware cannot be upgraded for various reasons. 
 
When looking for hardware products that already support TCP/IPv6, an excellent source of information 
is the IPv6 Ready Approved Products List. If possible, choose products that have passed the Phase 2 
(Gold level) testing. This insures full compliance with all relevant RFCs and interoperability with many 
other products. There is also a list of products that have passed the Phase 1 (Silver level) testing. Phase 1 
testing insures compliance with all items denoted MUST in the relevant RFCs. Phase 2 testing also 
insures compliance with all items denoted SHOULD in the relevant RFCs (a much more comprehensive 
set of functionality). These lists are updated and maintained by the IPv6 Ready Logo Committee of the 
IPv6 Forum. They can be found here: 
 

http://www.ipv6ready.org/phase-1_approved_list 
http://www.ipv6ready.org/phase-2_approved_list 

 
 
5.2 – RFCs: A Whole Raft of New Standards for TCP/IPv6 
 
There are many new RFCs that define the protocols, addressing and routing schemes, as well as 
migration issues for TCP/IPv6. I will cover the most important of those in this chapter. 
 
You can trace the beginnings and evolution of TCP/IPv6 in some early RFCs. In 1990, when the IETF first 
realized that a successor to TCP/IPv4 was going to be needed (and soon), the fun began. One key RFC 
related to this is RFC 1752, “The Recommendation for the IP Next Generation Protocol”, January 1995. 
Prior to this, people referred to the successor protocol as IPng (IP next generation), but in this RFC the 
term IPv6 was used. RFC 1752 says that the IETF started its effort to select a successor in late 1990, and 
that several parallel efforts were started. Among these proposals were “CNAT”, “IP Encaps”, “Nimrod”, 
“Simple CLNP”, the “P Internet Protocol”, the “Simple Internet Protocol” and “TP/IX”. None of these 
ever made it past the Internet Draft stage.  
 
By late 1993, an IPng Working Group was formed, and the various proposals still around were reviewed. 
These included CATNIP, TUBA, and SIPP. Relevant RFCs (now of only historical interest) are: 
 

 RFC 1347 “TCP and UDP with Bigger Addresses (TUBA)”, June 1992 (Informational) 

 RFC 1526 “Assignment of System Identifiers for TUBA/CLNP Hosts”, September  1993 
(Informational) 

 RFC 1561, “Use of ISO CLNP in TUBA Environments”, December 1993 (Experimental) 

 RFC 1707, “CATNIP: Common Architecture for the Internet”, October  1994 (Informational) 

 RFC 1710, “Simple Internet Protocol Plus White Paper”, October 1994 (Informational) 
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The CLNP referred to in several of these was the “Connectionless-mode Network Layer Protocol”, 
defined in ISO/IEC 8473, which did not make it into the final IPv6 specification. By 1995 a consensus had 
emerged, with the best features of all the contenders. The consensus was summarized in RFC 1752. 
Before the end of the year (barely), the first real TCP/IPv6 specifications were published: 
 

 RFC 1883, “Internet Protocol, Version 6 (IPv6) Specification”, December 1995 (Standards Track, 
obsoleted by RFC 2460) 

 RFC 1884, “IP Version 6 Addressing Architecture”, December 1995 (Standards Track, obsoleted 
by RFC 2373) 

 RFC 1885, “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 
(IPv6) Specification”, December 1995 (Standards Track, obsoleted by RFC 2463) 

 RFC 1886, “DNS extensions to support IP version 6”, December 1995 (Standards Track – 
obsoleted by RFC 3596) 

 RFC 1887, “An Architecture for IPv6 Unicast Address Allocation”, December 1995 (Informational) 
 
Most of these have been updated since then and there are quite a few new ones since 1995, but this is 
where it really started. Yes, TCP/IPv6 is turning 15 years old in 2010, and has finally grown up. 
 
 
5.3 – TCP/IPv6 
 
The software that is making the Second Internet (and virtually all Local Area Networks) possible will be 
around for quite some time. Like its predecessor, TCP/IPv4, it is a suite (family) of protocols. Once again, 
the core protocols are TCPv6 (Transmission Control Protocol version 6) and IPv6 (Internet Protocol 
version 6). TCPv6 has very few changes from TCPv4, but there are a few, due to the larger addresses 
that require more storage, and the odd method of calculating the checksum defined in TCPv4 (this 
involves a “pseudo header” that includes the source and destination addresses from the IP header, 
which of course are different in IPv4 and IPv6).  
 
There is no new RFC specifically about TCPv6, but there are several RFCs that include details about the 
new features. 
 
UDP has only very minor changes to work over IPv6, primarily to provide more storage for IPv6 
addresses. The UDP packet header checksum also includes the IP addresses, once again using the new 
pseudo header. 
 
The following standards current define IPv6: 
 

 RFC 1809, “Using the Flow Label Field in IPv6”, June 1995 (Informational) 

 RFC 1881, “IPv6 Address Allocation Management”, December 1995 (Informational) 

 RFC 1887, “An Architecture for IPv6 Unicast Address Allocation”, December 1995 
(Informational) 

 RFC 1981, “Path MTU Discovery for IP version 6”, August 1996 (Standards Track) 

 RFC 2428, “FTP Extensions for IPv6 and NATs”, September 1998 (Standards Track) 

 RFC 2460, “Internet Protocol, Version 6 (IPv6) Specification”, December 1998 (Standards 
Track) 
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 RFC 2473, “Generic Packet Tunneling in IPv6 Specification”, December 1998 (Standards Track) 

 RFC 2474, “Definition of the Differentiated Service Field (DS Field) in the IPv4 and IPv6 
Headers”, December 1998 (Standards Track) 

 RFC 2526, “Reserved IPv6 Subnet Anycast Addresses”, March 1999 (Standards Track) 

 RFC 2529, “Transmission of IPv6 over IPv4 Domains without Explicit Tunnels”, March 1999 
(Standards Track) 

 RFC 2675, “IPv6 Jumbograms”, August 1999 (Standards Track) 

 RFC 2711, “IPv6 Router Alert Option”, October 1999 (Standards Track) 

 RFC 2765, “Stateless IP/ICMP Translation Algorithm (SIIT)”, February 2000 (Standards Track) 

 RFC 2767, “Dual Stack Hosts using the Bump-In-the-Stack Technique (BIS)”, February 2000 
(Informational) 

 RFC 2894, “Router Renumbering for IPv6”, August 2000 (Standards Track) 

 RFC 3053, “IPv6 Tunnel Broker”, January 2001 (Informational) 

 RFC 3056, “Connection of IPv6 Domains via IPv4 Clouds”, February 2001 (Standards Track) 

 RFC 3089, “A SOCKS-based IPv6/IPv4 Gateway Mechanism”, April 2001 (Informational) 

 RFC 3111, “Service Location Protocol Modifications for IPv6”, May 2001 (Standards Track) 

 RFC 3122, “Extensions to IPv6 Neighbor Discovery for Inverse Discovery Specification”, June 
2001 (Standards Track) 

 RFC 3142, “An IPv6-to-IPv4 Transport Relay Translator”, June 2001 (Informational) 

 RFC 3175, “Aggregation of RSVP for IPv4 and IPv6 Reservations”, September 2001 (Standards 
Track) 

 RFC 3177, “IAB/IESG Recommendations on IPv6 Address Allocations to Sites”, September 2001 
(Informational) 

 RFC 3178, “IPv6 Multihoming Support at Site Exit Routers”, October 2001 (Informational) 

 RFC 3306, “Unicast-Prefix-based IPv6 Multicast Addresses”, August 2002 (Standards Track) 

 RFC 3314, “Recommendations for IPv6 in Third Generation Partnership Project (3GPP) 
Standards”, September 2002 (Informational) 

 RFC 3316, “Internet Protocol Version 6 (IPv6) for Some Second and Third Generation Cellular 
Hosts”, April 2003 (Informational) 

 RFC 3363, “Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name 
System”, August 2002 (Informational) 

 RFC 3364, “Tradeoffs in Domain Name System (DNS) Support for Internet Protocol version 6 
(IPv6)”, August 2002 (Informational) 

 RFC 3484, “Default Address Selection for Internet Protocol version 6 (IPv6)”, February 2003 
(Standards Track) 

 RFC 3531, “A Flexible Method for Managing the Assignment of Bits of an IPv6 Address Block”, 
April 2003 (Informational) 

 RFC 3574, “Transition Scenarios for 3GPP Networks”, August 2003 (Informational) 

 RFC 3582, “Goals for IPv6 Site-Multihoming Architectures”, August 2003 (Informational) 

 RFC 3587, “IPv6 Global Unicast Address Format”, August 2003 (Informational) 

 RFC 3595, “Textual Conventions for the IPv6 Flow Label”, September 2003 (Standards Track) 

 RFC 3697, “IPv6 Flow Label Specification”, March 2004 (Standards Track) 

 RFC 3710, “6bone (IPv6 Testing Address Allocation) Phaseout”, March 2004 (Standards Track) 

 RFC 3750, “Unmanaged Networks IPv6 Transition Scenarios”, April 2004 (Informational) 

 RFC 3756, “IPv6 Neighbor Discovery (ND) Trust Models and Threats”, May 2004 (Informational) 
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 RFC 3769, “Requirements for IPv6 Prefix Delegation”, June 2004 (Informational) 

 RFC 3849, “IPv6 Address Prefix Reserved for Documentation”, July 2004 (Informational) 

 RFC 3879, “Deprecating Site Local Addresses”, September 2004 (Standards Track) 

 RFC 3904, “Evaluation of IPv6 Transition Mechanisms for Unmanaged Networks”, September 
2004 (Informational) 

 RFC 3974, “SMTP Operational Experience in Mixed IPv4/v6 Environments”, January 2005 
(Informational) 

 RFC 4007, “IPv6 Scoped Address Architecture”, March 2005 (Informational) 

 RFC 4029, “Scenarios and Analysis for Introducing IPv6 into ISP Networks”, March 2005 
(Informational) 

 RFC 4038, “Application Aspects of IPv6 Transition”, March 2005 (Informational) 

 RFC 4057, “IPv6 Enterprise Network Scenarios”, June 2005 (Informational) 

 RFC 4074, “Common Misbehavior Against DNS Queries for IPv6 Addresses”, May 2005 
(Informational) 

 RFC 4135, “Goals of Detecting Network Attachment in IPv6”, May 2005 (Informational) 

 RFC 4147, “Proposed Changes to the Format of the IANA IPv6 Registry”, August 2005 
(Informational) 

 RFC 4159, “Depreciation of ip6.in”, August 2005 (Best Current Practice) 

 RFC 4177, “Architectural Approaches to Multihoming for IPv6”, September 2005 (Informational) 

 RFC  4192, “Procedures for Renumbering an IPv6 Network without a Flag Day”, September 2005 
(Informational) 

 RFC 4193, “Unique Local IPv6 Unicast Addresses”, October 2005 (Standards Track) 

 RFC 4213, “Basic Transition Mechanisms for IPv6 Hosts and Routers”, October 2005 (Standards 
Track) 

 RFC 4215, “Analysis of IPv6 Transition in Third Generation Partnership Project (3GPP) 
Networks”, October 2005 (Informational) 

 RFC 4218, “Threats Relating to IPv6 Multihoming Solutions”, October 2005 (Informational) 

 RFC 4241, “A Model of IPv6/IPv4 Dual Stack Internet Access Service”, December  2005 
(Informational) 

 RFC 4291, “IP Version 6 Addressing Architecture”, February 2006 

 RFC 4294, “IPv6 Node Requirements”, April 2006 (Informational) 

 RFC 4311, “IPv6 Host-to-Router Load Sharing”, November 2005 (Standards Track) 

 RFC 4330, “Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI”, January 2006 
(Informational) 

 RFC 4339, “IPv6 Host Configuration of DNS Server Information Approaches”, February 2006 
(Informational) 

 RFC 4380, “Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)”, 
February 2006 (Standards Track) 

 RFC 4429, “Optimistic Duplicate Address Detection (DAD) for IPv6”, April 2006 (Standards Track) 

 RFC 4443, “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 
(IPv6) Specification”, April 2006 (Standards Track) 

 RFC 4472, “Operational Considerations and Issues with IPv6 DNS”, April 2006 (Informational) 

 RFC 4554, “Use of VLANs for IPv4-IPv6 Coexistence in Enterprise Networks”, June 2006 
(Informational) 
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 RFC 4659, “BGP-MPLS IP Virtual Private Network (VPN) Extensions for IPv6 VPN”, September 
2006 (Standards Track) 

 RFC 4692, “Considerations on the IPv6 Host Density Metric”, October 2006 (Informational) 

 RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP and TCP Headers”, 
November 2006 (Standards Track) 

 RFC 4773, “Administration of the IANA Special Purpose IPv6 Address Block”, December 2006 
(Informational) 

 RFC 4779, “ISP IPv6 Deployment Scenarios in Broadband Access Networks”, January 2007 
(Informational) 

 RFC 4798, “Connecting IPv6 Islands over IPv4 MPLS Using IPv6 Provider Edge Routers (6PE)”, 
February 2007 (Standards Track) 

 RFC 4818, “RADIUS Delegated-IPv6-Prefix Attribute”, April 2007 (Standards Track) 

 RFC 4852, “IPv6 Enterprise Network Analysis – IP Layer 3 Focus”, April 2007 (Informational) 

 RFC 4861, “Neighbor Discovery for IP version 6 (IPv6)”, September 2007 (Standards Track) 

 RFC 4862, “IPv6 Stateless Address Autoconfiguration”, September 2007 (Standards Track) 

 RFC 4864, “Local Network Protection for IPv6”, May 2007 (Informational) 

 RFC 4890, “Recommendations for Filtering ICMPv6 Messages in Firewalls”, May 2007 
(Informational) 

 RFC 4919, “IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, 
Assumptions, Problem Statement and Goals”, August 2007 (Informational) 

 RFC 4941, “Privacy Extensions for Stateless Address Autoconfiguration in IPv6”, September 
2007 (Standards Track) 

 RFC 4942, “IPv6 Transition/Co-existence Security Considerations”, September 2007 
(Informational) 

 RFC 4943, “IPv6 Neighbor Discovery On-link Assumption Considered Harmful”, September 2007 
(Informational) 

 RFC 4968, “Analysis of IPv6 Link Models for 802.16 Based Networks”, August 2007 
(Informational) 

 RFC 5006, “IPv6 Router Advertisement Option for DNS Configuration”, September 2007 
(Experimental) 

 RFC 5095, “Deprecation of Type 0 Routing Headers in IPv6”, December 2007 (Standards Track) 

 RFC 5156, “Special-Use IPv6 Addresses”, April 2008 (Informational) 

 RFC 5157, “IPv6 Implications for Network Scanning”, March 2008 (Informational) 

 RFC 5172, “Negotiation for IPv6 Datagram Compression Using IPv6 Control Protocol”, March 
2008 (Standards Track) 

 RFC 5175, “IPv6 Router Advertisement Flags Option”, March 2008 (Standards Track) 

 RFC 5181, “IPv6 Deployment Scenarios in 802.16 Networks”, May 2008 (Informational) 

 RFC 5214, “Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)”, March 2008 
(Informational) 

 RFC 5350, “IANA Considerations for the IPv4 and IPv6 Router Alert Options”, September 2008 
(Standards Track) 

 RFC 5375, “IPv6 Unicast Address Assignment Considerations”, December 2008 (Informational) 

 RFC 5453, “Reserved IPv6 Interface Identifiers”, February 2009 (Standards Track) 

 RFC 5533, “Shim6: Level 3 Multihoming Shim Protocol for IPv6”, June 2009 (Standards Track) 
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 RFC 5534, “Failure Detection and Locator Pair Exploration Protocol for IPv6 Multihoming”, June 
2009 (Standards Track) 

 RFC 5549, “Advertising IPv4 Network Layer Reachability Information with an IPv6 Next Hop”, 
May 2009 (Standards Track) 

 RFC 5569, “IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)”, January 2010 
(Informational) 

 RFC 5570, “Common Architecture Label IPv6 Security Option (CALIPSO)”, July 2009 
(Informational) 

 RFC 5572, “IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)”, February 2010 
(Experimental) 

 RFC 5579, “Transmission of IPv4 Packets over Intra-Site Automatic Tunnel Addressing Protocol 
(ISATAP) Interfaces”, February 2010 (Informational) 

 RFC 5619, “Softwire Security Analysis and Requirements”, August 2009 (Standards Track) 

 RFC 5701, “IP Address Specific BGP Extended Community Attribute”, November 2009 (Standards 
Track) 

 RFC 5722, “Handling of Overlapping IPv6 Fragments”, December 2009 (Standards Track) 

 RFC 5798, “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6”, March 2010 
(Standards Track) 
 
 

5.3.1 – Four Layer TCP/IPv6 Architectural Model 
 

 
 

Figure 5.3-a: Four Layer TCP/IPv6 Model 
 

The major changes from the TCP/IPv4 model are: 
 

 Application Layer: DHCPv4 replaced with DHCPv6 

 Transport Layer: TCPv4 replaced with TCPv6, UDPv4 replaced with UDPv6 

 Internet Layer: IPv4 replaced with IPv6, ICMPv4 replaced with ICMPv6  

 Link Layer: Removed ARP, Added ND, OSPFv2 replaced with OSPFv3 
 



94 

 

The Application Layer implements the protocols most people are familiar with (e.g. HTTP). The software 
routines for these are typically contained in application programs such as browsers or web servers that 
make system calls to subroutines (or “functions” in C terminology) in the “socket API” (an API is an 
Application Program Interface, or a collection of related subroutines, typically supplied with the 
operating system or programming language). The application code creates outgoing data streams, and 
then calls routines in the API to actually send the data via TCP (Transmission Control Protocol) or UDP 
(User Datagram Protocol). Output to Transport Layer: [DATA] using IP addresses. 
 
The Transport Layer implements TCP (the Transmission Control Protocol) and UDP (the User Datagram 
Protocol). These routines are internal to the Socket API. They add a TCP or UDP packet header to the 
data passed down from the Application Layer, and then pass the data down to the Internet Layer for 
further processing. Output to Internet Layer: [TCP HDR [DATA], using IP addresses. 
 
The Internet Layer implements IPv6 (the Internet Protocol) and various other related protocols such as 
ICMPv6 (which includes the “ping” function among other things). The IP routine takes the data passed 
down from the Transport Layer routines, adds an IPv6 packet header onto it, then passes the now 
complete IPv6 packet down to routines in the Link Layer. Output to Link layer: [IPv6 HDR [TCP HDR 
[DATA]]] using IP addresses. 
 
The Link Layer implements ND (the Neighbor Discovery protocol) that help locates the link layer 
addresses of other nodes on the link, in addition to other functionality. It also contains routines that 
actually read and write packets (as fed down to it by routines in the Internet Layer) onto the network 
wire, in compliance with Ethernet or other standards. Output to wire: Ethernet packet using MAC 
addresses (or the equivalent if other network hardware is used, such as Wi-Fi).  
 
The following standards are relevant to the Link Layer in IPv6: 
 

 RFC 2464, “Transmission of IPv6 Packets over Ethernet Networks”, December 1998 (Standards 
Track) 

 RFC 2467, “Transmission of IPv6 Packets over FDDI Networks”, December 1998 (Standards 
Track) 

 RFC 2470, “Transmission of IPv6 Packets over Token Ring Networks”, December 1998 (Standards 
Track) 

 RFC 2491, “IPv6 over Non-Broadcast Multiple Access (NBMA) networks”, January 1999 
(Standards Track) 

 RFC 2492, “IPv6 over ATM Networks”, January 1999 (Standards Track) 

 RFC 2497, “Transmission of IPv6 Packets over ARCnet Networks”, January 1999 (Standards 
Track) 

 RFC 2590, “Transmission of IPv6 Packets over Frame Relay Networks Specification”, May 1999 
(Standards Track) 

 RFC 3146, “Transmission of IPv6 Packets over IEEE 1394 Networks”, October 2001 (Standards 
Track) 

 RFC 4338, “Transmission of IPv6, IPv4 and Address Resolution Protocol (ARP) Packets over Fibre 
Channel”, January 2006 (Standards Track) 

 RFC 4392, “IP over InfiniBand (IPoIB) Architecture”, April 2006 (Informational) 



95 

 

 RFC 4944, “Transmission of IPv6 Packets over IEEE 802.15.4 Networks”, September 2007 
(Standards Track) 

 RFC 5072, “IP Version 6 over PPP”, September 2007 (Standards Track) 

 RFC 5121, “Transmission of IPv6 via the IPv6 Convergence Sublayer over IEEE 802.16 Networks”, 
February 2008 (Standards Track) 

 
 
5.3.2 – IPv6: The Internet Protocol, Version 6 
 
IPv6 is the foundation of TCP/IPv6 and accounts for many of its distinguishing characteristics, such as its 
128-bit address size, its addressing model, its packet header structure and routing. IPv6 is currently 
defined in RFC 2460, “Internet Protocol, Version 6 (IPv6) Specification”, December 1998, but there are 
several RFCs that extend the definition. 
 
 
5.3.2.1 – IPv6 Packet Header Structure 
 
So what are these packet headers mentioned above? In TCP/IPv6 packets, there is a TCP (or UDP) packet 
header, then an IPv6 packet header, then zero or more packet header extensions, then the packet data. 
Each header and header extension is a structured collection of data, including things such as the IPv6 
address of the sending node, and the IPv6 address of the destination node. Why are we getting down to 
this level of detail? Because some of the big changes from IPv4 to IPv6 have to do with the new and 
improved IP packet header architecture in IPv6. In this chapter, we’ll cover the IPv6 packet header.  Here 
it is: 
 

 
 

Figure 5.3-b: IPv6 Packet Header 
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The IP Version field (4 bits) contains the value 6 (imagine that!) which in binary is “0110”. This field 
allows IPv4 and IPv6 traffic to be mixed in a single network. 
 
The Traffic Class field (8 bits) Available for use by originating nodes and/or forwarding routers to identify 
and distinguish between different classes or priorities of IPv6 packets, in a manner virtually identical to 
that of IPv4 “Type of Service”.  
 
The Flow Label field (20 bits) is something new in IPv6. It can be used to tag up to 220 (1,048,576) distinct 
traffic flows, for purposes such as fine grained bandwidth management (QoS). Its use is still 
experimental. Hosts or routers that do not support this function should set it to zero when originating a 
packet, or ignore it when receiving a packet. The semantics and usage of this field are covered in 
Appendix A of RFC 2460. 
 
The Payload Length field (16 bits) is the length of the IPv6 packet payload in bytes, not counting the 
standard packet header (as it is in IPv4 Total Length), but counting the size of any extension headers, 
which don’t exist in IPv4. You can think of packet extension headers as being the first part of the data 
field (payload) of the IPv6 packet. 
 
The Next Header field (8 bits) indicates the type of header immediately following the standard IPv6 
packet header. It uses the same values as the IPv4 Protocol field, as defined in RFC 1700, “Assigned 
Numbers”, October 1994. If this value contains the code for TCP, then the TCP header and packet 
payload (data) begins immediately after the IPv6 packet header.  Otherwise one or more IPv6 extension 
headers will be found before the TCP header and data begins. Since each extension header has another 
Next Header field (and a Header Length field), this constitutes a linked list of headers before the final 
extension header, which is followed by the data. UDP packets can also have extension headers. 
 
The Hop Limit field (8 bits) is to prevent packets from being shuttled around indefinitely on a network. 
Every time a packet crosses a switch or router, the hop count is decremented by one. If it reaches zero, 
the packet is dropped. Typically if this happens, an ICMPv6 message (“time exceeded”) is returned to 
the packet sender. This mechanism is how the traceroute command works. 
 
 The Source Address field (128 bits) contains the IPv6 address of the packet sender. 
 
The Destination Address field (128 bits) contains the IPv6 address of the packet recipient. 
 
Data – (variable number of bytes) The data part (payload) of the packet, starts immediately after the 
packet header (it is not really part of the packet header). The contents of the Payload Length field 
contains the number of bytes in the payload. If there are any extension packet headers, they constitute 
the first part of the packet payload, and their length is included in the Payload Length field. 
 
Note: the following fields from the IPv4 packet header have been eliminated in the IPv6 packet header: 
Header Length, Identification (Fragment ID), Fragmentation Flags, Fragment Offset, Header Checksum, 
and Options. The value in the Payload Length field no longer includes the length of the standard packet 
header. The Flow Label field had no corresponding field in the IPv4 packet header.  Some of the missing 
fields (e.g. fragmentation information) have been pushed into an extension packet header. These exist 
only in fragmented packets. Unfragmented packets do not have to carry the unnecessary overhead. 
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IPv6 Packet Fragmentation and Path MTU Discovery 
 
The fields related to fragmentation are now found in the fragmentation extension header, which exists 
only in fragmented packets (no need to clutter up unfragmented packets, as in IPv4). In IPv6, only the 
originating node can fragment packets (no intervening node is supposed to do this). The originating 
node uses MTU Path Discovery to determine the “width” of the proposed path (the maximum packet 
size that it can handle). MTU stands for Maximum Transmitted Unit (maximum packet length). Any 
packets larger than that size must be fragmented before transmission by the originating node, and 
reassembled upon receipt by the destination node. There is a default packet size that any IPv6 node 
must be able to handle (1280 bytes). MTU Path Discovery allows the sender to determine if larger (more 
efficient) packets can be used. The originating node assumes the Path MTU is the MTU of the first hop in 
the path. A trial packet of this size is sent out. If any link is unable to handle it, an ICMPv6 Packet Too Big 
message is returned. The originating node iteratively tries smaller packet sizes until it gets no complaints 
from any node, and then uses the largest MTU that was acceptable along the entire path. This process 
takes place automatically in the Internet Layer. There is no corresponding mechanism in IPv4. 
 
Extension Headers (new in IPv6) 
 
After the main header, there can be zero or more extension headers, before the payload (actual packet 
data). This approach makes IPv6 highly extensible, for new functionality in years to come. Several 
extension headers are already defined, and doubtless more will be defined over time. 
 
The first byte of each extension header contains a Next Header field, identical to the same named field 
in the main IPv6 packet header (using codes from RFC 1700). The second byte of each extension header 
contains a Header Extension Length field, which specifies the length of this header, in 8 byte units, not 
including the first 8 bytes. Thus every extension header is at least 8 bytes long, and is a multiple of 8 
bytes in length. The following header (or data, if no more extension headers) will begin immediately 
after the end of this extension header. This effectively defines a linked list (a data structure familiar to all 
programmers). 
 
Here are some typical packet header sequences to illustrate how each chains to the next: 
 
   +---------------+------------------------ 

   |  IPv6 header  | TCP header + data 

   |               | 

   | Next Header = | 

   |      TCP      | 

   +---------------+------------------------ 

 

 

   +---------------+----------------+------------------------ 

   |  IPv6 header  | Routing header | TCP header + data 

   |               |                | 

   | Next Header = |  Next Header = | 

   |    Routing    |      TCP       | 

   +---------------+----------------+------------------------ 

 

 

   +---------------+----------------+-----------------+----------------- 
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   |  IPv6 header  | Routing header | Fragment header | fragment of TCP 

   |               |                |                 |  header + data 

   | Next Header = |  Next Header = |  Next Header =  | 

   |    Routing    |    Fragment    |       TCP       | 

   +---------------+----------------+-----------------+----------------- 

 

The basic Extension Headers are defined in RFC 2460, “Internet Protocol, Version 6 (IPv6) Specification”, 
December 1998. These include the following: 
 

 Options Extension Header 

 Hop-by-hop Options Extension Header 

 Routing Extension Header 

 Fragment Extension Header 

 Destination Extension Header 
 
Two extension headers are used for IPsec (IP layer security). The IPsec Authentication extension header 
(IPsec AH) is defined in RFC 2402, “IP Authentication Header”, November 1998. The Encapsulating 
Security Payload header (IPsec ESP) is defined in RFC 2406, “IP Encapsulating Security Payload (ESP)”, 
November 1998. 
 
When multiple extension headers are used in a single packet, the following order should be followed: 
 

 IPv6 basic header 

 Hop-by-Hop Options header 

 Destination Options header (for options to be processed by more than just final recipient) 

 Routing  header 

 Fragment header 

 Authentication header 

 Encapsulating Security Payload header 

 Destination Options header (for options to be processed only by final recipient) 

 Upper Layer header (TCP, UDP or SCTP) 
 
Hop-by-hop Options Header – used to carry optional information that must be examined by every node 
along a packet’s delivery path. This option is indicated by a Next Header value of 0. 
 
Routing Header – used by an IPv6 source node to list one or more intermediate nodes to be “visited on 
the way” to a packet’s destination. This is similar to IPv4’s Loose Source and Record Route option. The 
Routing Header is identified by a Next Header value of 43. 
 
Fragment Header – used by an IPv6 source to send a packet larger than would fit in the path MTU to its 
destination. In IPv6, packet fragmentation is performed only by the source node, which must use MTU 
discovery to determine the maximum packet size along the proposed path.  The Fragment Header is 
identified by a Next Header value of 44. 
 
Destination Options Header – used to carry optional information that need to be examined only by a 
packet’s destination node(s). The Destination Options Header is identified by a Next Header value of 60. 
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For the specific details on each of the above header extension packets, see RFC 2460. The 
Authentication Header and ESP packet headers will be described later, under IPsec. 
 
 
5.3.2.2 – IPv6 Addressing Model 
 
In IPv6, addresses are 128 bits in length. They are simply numbers from 0 to about 340 undecillion (340 
Trillion, Trillion, Trillion). In exponential notation, that would be 3.40 e+38. However you write it, that’s 
a really big number. For the convenience of humans, these numbers are typically represented in what I 
call coloned hex notation (as opposed to the dotted decimal notation used with IPv4). This splits the 128 
bit addresses into eight 16-bit fields, and then represents each field with a hexadecimal (base 16) 
number  from 0 to ffff (you can use upper or lower case for the hexadecimal digits A-F, but it is common 
practice in IPv6 to use lower case). These hexadecimal numbers cover all possible 16 bit binary patterns 
from 0000 0000 0000 0000 to 1111 1111 1111 1111. The hexadecimal numbers are separated by colons 
(“:”). Leading zeros can be eliminated in each field. At most one run of zeros can be replaced by the 
double colon, “::”. The following are all valid IPv6 addresses written in coloned hex notation: 
 
2001:df8:5403:3000:b5ea:976d:679f:30f5 A unicast address using EUI-64 

2001:df8:5403:3000::1e   A manually assigned unicast address 

fe80::b5ea:976d:679f:30f5   A link-local address using EUI-64 

ff02::1     A multicast address (all nodes on link) 

::1      The loopback address for IPv6 

::      The unspecified address (all zeros) 

 
Some people are aware that you can use IPv4 addresses instead of nodenames in web URIs, for 
example: http://123.45.67.89/main.html. You can also use IPv6 addresses, but because colons demark 
other things in URIs (such as non-standard port number), you cannot use IPv6 addresses “as is”, you 
must enclose them in square brackets ([]). For example, http://[2001:df8:5403:3000::d]/nagios is a valid 
URI that includes an IPv6 numeric address. 
 
In certain cases, the size of the subnet is specified after the address, similar to CIDR. This is especially 
common when representing prefixes, for example: 
 
2001:df8:5403::/48    An organization‟s 48 bit network prefix 

2001:df8:5403:3000::/52   A /52 block routed into a branch office 

2001:df8:5403:3000::/64   The 64 bit prefix for one subnet in a branch 

 
When an RIR (e.g. APNIC) allocates a “/32” block of addresses to an ISP they assign the first 32 bits of 
those addresses, based on the next available “/32” block from the unallocated pool at that time.  A 
“/32” block contains 65,536 “/48” blocks to allocate to customers. If the ISP allocates all of those, then  
the RIR will give them a new “/32” block, each address of which will have a completely different first 32 
bits from the addresses in the previous “/32” block given to the ISP. The most significant 32 bits (bits 1 
to 32) of every address in a given “/32” block will all be the same. All smaller blocks (like “/48” or “/64”) 
carved out of that “/32” by the ISP will have the same first 32 bits as the other addresses in the parent 
block. 
 
When an ISP allocates a “/48” block for a customer, from their “/32” block, the next 16 bits (bits 33 to 
48) are chosen by the ISP, so that the first 48 bits will be unique to that customer. The first 48 bits of 
every address in a “/48” block given to an organization will all be the same, but will be different from the 
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first 48 bits of the addresses in any other “/48” block in the world.  You can think of this 48-bit sequence 
as the organization prefix. When a customer deploys subnets, they choose a 16 bit value (unique within 
their organization) for each subnet, which together with the organization’s 48 bit prefix, creates a 
globally unique 64 bit prefix for a working subnet. This can be used to manually configure 128-bit 
addresses for nodes on that subnet, or can be configured on the Router Advertisement Daemon that 
supplies prefixes to nodes in that subnet for Stateless Address Autoconfiguration. If using stateful 
DHCPv6, the administrator can also create pools of addresses for assignment, where each 128-bit 
address in a pool has that same 64 bit subnet prefix.  
 
IPv6 Packet Transmission Types 
 
In TCP/IPv4, there were several packet transmission types (unicast, anycast and multicast). IPv4 
Multicast uses Class D addresses, while all other addresses are unicast (or reserved). There is no real 
concept of scope in IPv4 (the part of the network in which a given address is valid and unique). IPv4 
“Private Addresses” are a step in this direction, but IPv6 defines real scope rules for certain kinds of 
addresses. These concepts are defined in RFC 4291, “IP Version 6 Addressing Architecture”, February 
2006. Note: in Windows, “ping” is used for both IPv4 and IPv6. In Linux and BSD, the “ping” command is 
used just for IPv4 – in IPv6, the command is “ping6”. In the following, I use just the generic “ping”, but 
be aware that for IPv6 on some platforms, “ping6” would actually be used. 
 
IPv6 Address Scopes 
 
The scope of an address specifies in what part of the network it is valid and unique. The defined scopes 
in IPv6 are: 
 
Node-local – valid only within the local node (e.g. loopback address) 
 
Link-local – valid only within a single network link. All such addresses start with the ten bits “1111 1110 
10” followed by 54 bits of 0 (fe80::/64). When specified in commands, you usually must follow a link-
local address with “%” and the interface ID of the link it is connected to. In FreeBSD, this might be 
something like “fxp0”, so to ping a link local address, you might use the command:  
 

ping fe80::3c79:b2ca:90ce:5d59%fxp0 

 
In Windows, interface IDs are numbers, so a ping command there might look like:  
 

ping fe80::3c79:b2ca:90ce:5d59%11 

 
Site-local – valid only within a “site”. They start with the 10 bits “1111 1110 11” (fec0::/10). These were 
intended to be like IPv4 RFC 1918 “private addresses”, but are no longer used as of RFC 3878, 
“Deprecating Site Local Addresses”, September 2004. 
 
Global – valid anywhere on the IPv6 Internet. Global unicast addresses are in the 2000::/3 block. When 
you specify global addresses, there is no need to append the interface ID, so a ping command for such 
an address might look like: 
 

ping 2001:df8:5403:3000::c 
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IPv6 Address Types 
 
A unicast address specifies a single network interface (destination address). Currently, all global unicast 
addresses are in the 2000::/3 block. There are also link local unicast addresses, in the fe80::/10 block. 
The global unicast address type is defined in RFC 3587 “IPv6 Global Unicast Address Format”, August 
2003. This RFC deprecates (makes historic) the “Top Level Aggregator” and “Next Level Aggregator” 
(TLA/NLA) scheme previously defined for global unicast addresses, and formalizes the 48-bit 
organization prefix, 16-bit subnet number and 64-bit interface identifier concept used today. 
 
    | 3 |     45 bits         |  16 bits  |       64 bits              | 

    +---+---------------------+-----------+----------------------------+ 

    |001|global routing prefix| subnet ID |       interface ID         | 

    +---+---------------------+-----------+----------------------------+ 

 
There are two special unicast addresses: 
 
:: (all bits zero) – the unspecified address, must never be assigned to any node 
::1 (127 zeros followed by a 1) – the loopback address for IPv6 (corresponds to 127.0.0.0 in IPv4) 
 
When Site-local scope was deprecated, a new address type called Unique Local Unicast was defined in 
RFC 4193, “Unique Local IPv6 Unicast Addresses”, October 2005. These addresses are in the fc00:/7 
block. The first 7 bits are “1111 110”. The 8th bit is called “L”. If L = 1 the address is locally assigned (L = 0 
is reserved for future use). The next 40 bits are a Global ID that insures the global uniqueness of the 
overall address. It is generated pseudo-randomly, and must not be sequential. The next 16 bits are a 
subnet ID and the final 64 bits are an interface ID (just like in global unicast addresses). Perhaps 
someday there will be a way to reserve specific Global IDs from a central authority (to prevent anyone 
else from using one you have chosen), but no such mechanism exists today. These addresses have much 
the same semantics as the IPv4 private addresses. 
 
      | 7 bits |1|  40 bits   |  16 bits  |          64 bits           | 

      +--------+-+------------+-----------+----------------------------+ 

      | Prefix |L| Global ID  | Subnet ID |        Interface ID        | 

      +--------+-+------------+-----------+----------------------------+ 

 

An anycast address can specify any of a group of addresses (usually on different nodes). A packet sent 
to an anycast address will be delivered to exactly one of those interfaces, typically the “nearest” one (in 
the network sense, not geographic sense). Anycast addresses look just like unicast addresses, and differ 
only in being injected into the routing protocol at multiple locations in the network. 
 
A multicast address specifies multiple network destinations (multiple nodes can be configured with the 
same multicast address). A packet sent to a multicast address will be delivered to all nodes that have 
been assigned that address. Multicast addresses all have the special prefix ff00::/8 (the first 8 bits of 
multicast addresses are all ones). After the first 8 bits, there are 4 bits of flags (0,0,0,T). If T=0, the 
address is a “Well Known” address assigned by IANA. If T=1, then the address is a non-permanently 
assigned (“transient”) address. The scope is specified in the next 4 bits, followed by 112 bits of group ID: 
 
   |   8    |  4 |  4 |                  112 bits                   | 
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   +------ -+----+----+---------------------------------------------+ 

   |11111111|flgs|scop|                  group ID                   | 

   +--------+----+----+---------------------------------------------+ 

 

There are several multicast scopes defined by the four scope bits. All other combinations are 
unassigned. 
 
            0  reserved 

            1  interface-local scope 

            2  link-local scope 

            3  reserved 

            4  admin-local scope 

            5  site-local scope 

            8  organization-local scope 

            E  global scope 

            F  reserved 

 
The following multicast groups are “well known” (T=0): 
 
  1 node 

  2 router 

  5 OSPF IGP router 

  6 OSPF IGP Designated router 

  9 RIP router 

  a EIGRP router 

  b mobile agent 

  d PIM router 

  16 MLDv2 capable router 

  fb DNS server 

  101 NTP server 

  108 NIS+ server 

  1:3 DHCP server 

 
As there are 112 bits for group ID, there are 2112 (about 5.19 e+33) possible multicast groups. That is 
enough for the entire world, for quite some time to come. You can think of a multicast group as similar 
to a TV channel number. As examples, the following multicast addresses are all valid (and are all “well 
known”): 
 
 ff02::1  All nodes on the local link 

 ff05::1  All nodes in the organization 

 

 ff02::2  All routers on the local link 

 ff05::2  All routers in the site 

 

 ff02::fb  All DNS servers on the local link 

 ff08::fb  All DNS servers in the organization 

 

 ff02::1:3  All DHCP servers on the local link 

 ff05::1:3  All DHCP servers in the site 

 
Note that with the scopes larger than the local link, multicast addresses must be specifically configured 
on nodes (you have to “subscribe to that channel”). If you ping the multicast address ff0e::1, you are not 
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going to get a response from every node on earth, unless you can first talk everyone into adding that 
address to their nodes. Even then, various routers along the way would probably block that packet. An 
organization’s routers enforce the scope rules so that link-local multicast addresses will not cross any 
routers, organization-local multicast addresses will not cross the organization’s border router, but global 
multicast addresses will cross any router (in the real world, this is actually managed by the MLD – the 
Multicast Listener Discovery protocol and PIM, the Protocol-Independent Multicast protocol). 
 
A solicited node multicast address is a special multicast address (addressed to all nodes on the local 
link) created from a global unicast address by appending the least significant (rightmost) 24 bits of the 
unicast address to the special prefix ff02:0:0:0:1:ff::/104. For the global unicast address 
 
 2001:df8:5403:3000:3c79:b2ca:90ce:5d59 

 
the solicited node multicast address is:  
 
 ff02::1:ffce:5d59 

 
These addresses are used by ND (the Neighbor Discovery protocol) in the process of mapping IPv6 
addresses to Link Layer (MAC) addresses. 
 
There is no broadcast address in IPv6, but a multicast to the all nodes on the local link multicast group 
ff02::1 will have pretty much the same result. 
 
Perhaps someday there will be a central authority to coordinate use (and allow reservation) of multicast 
group IDs. No such authority currently exists. Once IPv6 multicast broadcasters start making their 
programming available over large regions (or even worldwide), such coordination will be necessary, and 
corresponds to the FCC’s management of broadcast frequencies that prevent stations from interfering 
with each other. Because the number of potential group IDs is so large (2112 or about 5.19 e+33), for 
now, choosing them randomly is sufficient. The probability of any two randomly generated group IDs 
being the same is quite low, even with millions of people using this scheme. You might think of these 
group ID’s as being in some sense channel numbers as found today on TVs. I can envision a search 
engine that would allow you to find multicast channels associated with programming that caters to 
specific tastes, such as Bollywood Music Videos over IPTV. 
 
Special Case: IPv4 Compatible IPv6 Addresses (Now Deprecated) 
 
The entire 4.3 billion addresses of IPv4 are mapped into the IPv6 address space, not just once, but twice. 
Once as IPv4 compatible IPv6 addresses (::w.x.y.z), and a second time as IPv4-mapped IPv6 addresses 
(::ffff:w.x.y.z).  
 
The addresses in the first special block all start with 96 bits of 0, followed by a 32 bit IPv4 address (which 
can be specified in dotted decimal). When you send traffic to an IPv4-compatible IPv6 address, it is sent 
as an IPv6 packet, but encapsulated with an IPv4 header, with the protocol field of the IPv4 packet 
header set to 41 to indicate that the payload is an IPv6 packet. The IPv4 header allows the traffic to 
travel across an IPv4-only infrastructure. Upon receipt, the packet payload (the IPv6 packet) is passed to 
the IPv6 protocol. This is called automatic IPv6 tunneling over IPv4 networks (defined in RFC 2893, 
“Transition Mechanisms for IPv6 Hosts and Routers”, August 2000). 
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IPv4 compatible IPv6 addressees were deprecated in RFC 4291, “IP Version 6 Addressing Architecture”, 
February 2006. No current transition mechanism uses them. New implementations are not required to 
support these addresses. Note however that two special addresses that are widely used actually fall into 
this range, the “unspecified” address (all zeros, or “::”), and the loopback address, (“::1”). 
 
Special Case: IPv4-Mapped IPv6 Addresses (Still Valid but Not Recommended) 
 
The addresses in the second special block of addresses all start with 80 bits of 0 (0:0:0:0:0), followed by 
16 bits of 1 (ffff), then a 32 bit IPv4 address (which can be, but does not have to be, specified in dotted 
decimal). When such an address is used on a dual stack node that supports IPv4-mapped IPv6 addresses, 
it causes an IPv4 packet to be sent using the last 32 bits of the IPv4-mapped IPv6 address, as the IPv4 
address. As an example, on a Windows 7 node configured with dual stack, you can ping an IPv4 node as 
usual with the command: 
 
 C:\Users\lhughes>ping 10.1.0.14 

 

 Pinging 10.1.0.14 with 32 bytes of data: 

 Reply from 10.1.0.14: bytes=32 time<1ms TTL=64 

 Reply from 10.1.0.14: bytes=32 time<1ms TTL=64 

 Reply from 10.1.0.14: bytes=32 time<1ms TTL=64 

 Reply from 10.1.0.14: bytes=32 time<1ms TTL=64 

 

You could ping the same IPv4, by using an IPv4-mapped IPv6 address, as follows. The ping command 
would first view the address as a valid IPv6 address, and create an IPv6 socket as usual. The IPv6 socket 
would look at the IPv6 address, realize it is an IPv4-mapped IPv6 address, then hand the operation over 
to the IPv4 stack to handle, using the low 32 bits of the IPv4-mapped IPv6 address. Normal IPv4 packets 
would be sent from the IPv6 socket, indistinguishable from the IPv4 packets sent in the example above. 
 

 C:\Users\lhughes>ping ::ffff:10.1.0.14 

  

 Pinging 10.1.0.14 with 32 bytes of data: 

 Reply from 10.1.0.14: bytes=32 time<1ms TTL=64 

 Reply from 10.1.0.14: bytes=32 time<1ms TTL=64 

 Reply from 10.1.0.14: bytes=32 time<1ms TTL=64 

 Reply from 10.1.0.14: bytes=32 time<1ms TTL=64 

 

In general you can do any I/O operation to an IPv4 node using IPv4 packets, from an IPv6 socket, by 
using these IPv4-mapped addresses (on nodes where this is supported). Some operating systems (e.g. 
OpenBSD) don’t support this kind of “cross-stack” operation at all. On some operating systems (Linux, 
NetBSD, FreeBSD) this mode is disabled by default, but can be enabled by including the following line in 
/etc/rc.conf: 
 
 … 
 ipv6_ipv4mapping=”YES” 
 … 
 

In general, it is best to avoid use of these addresses since support varies from operating system to 
operating system, behavior is implementation dependent, and there are potential vulnerabilities if it is 
enabled. It was originally intended as a transition mechanism, but it caused more problems than it 
solved, so it is better left unused, and ideally, disabled. 
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Simple IPv6 Address Assignment Scheme (for Manually Assigned Addresses) 
 
The following is not part of any standard, IETF or otherwise. It is a best-practices recommendation, which 
may help you in migration to IPv6. 
 
Many administrators have adopted a simple scheme for assigning IPv6 addresses manually to nodes, 
based on existing IPv4 address conventions or actual addresses. It could be argued that it can lead to 
confusion (by humans) between decimal and hexadecimal. It uses the same numeric digits that are 
currently used in your IPv4 scheme, to create what are really hexadecimal fields. It is possible to use the 
numeric digits (0 to 9) to create up to three hex digits in each of the four 16-bit groups in the IPv6 
interface identifier. The resulting address may look strange in binary, but this scheme will make it easier 
for you to keep track of your IPv6 nodes, and is especially useful in dual stack networks, where you can 
use what appears to be the “same” address (not counting the prefix) on a given node, in both IPv4 and 
IPv6. 
 
As an example, say our 48-bit organization prefix is 2001:df8:5403::/48. Let’s also say we have four 
subnets (independent links) for IPv4, so we would also have four subnets for IPv6. Let’s arbitrarily assign 
the IPv6 subnet numbers as 3000, 3100, 3200 and 3300 (all hex) for these subnets. Choose any values 
you want for subnet numbers (when setting up your network architecture) – you have 65,536 (from 
0000 to ffff) to play with. The following IPv4 addresses from these subnets could be assigned the 
corresponding IPv6 addresses: 
 
 IPv4 Subnet  IPv4 Address  Corresponding IPv6 Address 

 123.45.67.00/24 123.45.67.1  2001:df8:5403:3000:123:45:67:1 

 192.168.0.0/16 192.168.5.13  2001:df8:5403:3100:192:168:5:13 

 172.16.0.0/12  172.31.25.32  2001:df8:5403:3200:172:31:25:32 

 10.0.0.0/8  10.30.1.43  2001:df8:5403:3300:10:30:1:43 

 
Alternatively, It is also possible to use just the interface identifier part of the IPv4 address (“node 
number within subnet”)as the IPv6 interface identifier, in which case, the above addresses would be: 
 
 Subnet   IPv4 Address  Corresponding IPv6 Address 

 123.45.67.00/24 123.45.67.1  2001:df8:5403:3000::1 

 192.168.0.0/16 192.168.5.13  2001:df8:5403:3100::5:13 

 172.16.0.0/12  172.31.25.32  2001:df8:5403:3200::15:25:32 

 10.0.0.0/8  10.30.1.43  2001:df8:5403:3300::30:1:43 

 
The mapping for the 172.31.25.32 address may confuse you – this is because a /12 subnet mask length 
divides the second 8 bit field right (31) in the middle (4 bits of it are network address, and 4 bits are 
interface identifier). This is why using dotted decimal for IPv4 was a bad idea, and hexadecimal is used in 
IPv6. This can get even more confusing with very odd subnet lengths, like /19. The following should clear 
things up: 
 
       172      31        25        32  Full address, dotted decimal 

 

 A    C    1    F    1    9    2    0 Full address, hex 

 

 1010 1100 0001 1111 0001 1001 0010 0000 Full address, binary 

 

     F    1    9    2    0 Interface identifier, hex 
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                 15        25        32  Interface identifier, dotted decimal 

 

Using only the IPv4 interface identifier is less likely to produce addresses that collide with automatically 
generated addresses, but requires good understanding of IPv4 subnetting (see above). Use whichever 
scheme makes the most sense to you, but try to be consistent. 
 
The Simple IPv6 Address Assignment Scheme can also be used to manually assign link-local addresses. In 
this case, there is no IPv6 subnet number, because each address is valid only within a subnet. The 
following link-local addresses could be assigned to the above nodes: 
 
 Subnet   IPv4 Address  Corresponding IPv6 Address 

 123.45.67.00/24 123.45.67.1  fe80::123:45:67:1 

 192.168.0.0/16 192.168.5.13  fe80::192:168:5:13 

 172.16.0.0/12  172.31.25.32  fe80::172:31:25:32 

 10.0.0.0/8  10.30.1.43  fe80::10:30:1:43 

 
As with global unicast addresses, you could use just the interface identifier part of each IPv4 address, 
which would result in the following manually assigned IPv6 link-local addresses: 
 
 Subnet   IPv4 Address  Corresponding IPv6 Address 

 123.45.67.00/24 123.45.67.1  fe80::1 

 192.168.0.0/16 192.168.5.13  fe80::5:13 

 172.16.0.0/12  172.31.25.32  fe80::15:25:32 

 10.0.0.0/8  10.30.1.43  fe80::30:1:43 

 
Note that the address 123.45.67.1/24 and 192.168.0.1/16 would both produce fe80::1 as the equivalent 
IPv6 address, but this would not produce a conflict since they are in different subnets, and link-local 
addresses are valid only within a single subnet. 
 
Obviously no addresses generated with SAA will use this convention, although you should be careful to 
make sure there are no conflicts between addresses you create and automatically generated addresses.  
Duplicate Address Detection during automated address creation should detect such conflicts. On the 
other hand, you can easily create DHCPv6 address pools that will be consistent with these schemes. 
 
Warning: There is a perfect valid (but not often used) textual representation of IPv6 addresses that 
would allow you to use the exact same bits as a 32 bit IPv4 interface identifier, and even specify those 
32 bits in dotted decimal. However, it mixes hexadecimal and decimal numbers, plus colons and dots in 
a single address representation, which to me is extremely confusing and inelegant. It represents the first 
96 bits of an address in coloned hex notation, and the last 32 bits of that address in dotted decimal 
notation. When you use this mixed notation, you must always specify all four dotted decimal fields, and 
they must be the least significant 32 bits. It is possible that some software applications will not accept 
this representation. Also, many things that report addresses (e.g. ipconfig) have no way to know to 
display some addresses in mixed notation and others in regular coloned hex notation, so they just 
display all addresses in coloned hex notation. This can lead to confusion. As examples of addresses with 
this mixed notation, the above IPv4 addresses would have corresponding IPv6 addresses that look like 
this: 
 
 IPv4 Address IPv6 Address in “Mixed” Notation Same Address in Coloned Hex 

 123.45.67.1 2001:df8:5403:3000::123.45.67.1 2001:df8:5403:3000::7b2d:4301 

 192.168.5.13 2001:df8:5403:3100::192.168.5.13 2001:df8:5403:3000::c0a8:50d 
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 172.16.25.3 2001:df8:5403:3200::172.16.25.3 2001:df8:5403:3000::ac10:1903 

 10.30.1.43 2001:df8:5403:3300::10.30.1.43 2001:df8:5403:3000::a1e:12b 

 
I recommend that you avoid use of this mixed notation altogether. If you use the Simple IPv6 Address 
Assignment scheme, be very careful to use colons (not dots) between all fields, as software that 
understands the mixed address syntax will interpret addresses with dots in the last 4 groups as perfectly 
valid “mixed” notation. This will result in some odd problems. The mixed notation was really intended 
for use with IPv4-mapped IPv6 addresses, but it works anywhere. You should never create addresses 
using it, but you need to know about it in case you see addresses written in it by someone else. 
 
Multiple IPv6 Subnet Numbers on a Single Network Link 
 
A single network link can actually have addresses with more than one 16 bit subnet number at any given 
time. For example, the prefix 2001:df8:5403:1600::/64 may be used with stateless auto configuration, 
while the prefix 2001:df8:5403:1601::/64 could be used with stateful auto configuration using DHCPv6 
on the same network link. You could also have manually assigned addresses using a third prefix (e.g. 
2001:df8:5403:1602::/64) on the same network link. Addresses with different subnet numbers, but the 
same interface identifier, are not in conflict. Normally, you only broadcast one 64-bit prefix with Router 
Advertisement messages onto a given network link, so all address created with stateless auto 
configuration in a given subnet will have only that one 64-bit prefix. It is possible in some 
implementations to advertise up to 100 prefixes on each network link. If multiple prefixes are 
advertised, there will still be only one default gateway, which is the link-local address of the gateway 
that is sending Router Advertisement messages. Another alternative is to define a subnet size greater 
than /64 on a single network link that includes all of the desired subnet numbers. With a “/60” subnet, 
you can actually have 16 sequential /64 subnet numbers in a single network link (the first subnet 
number has to be an integral multiple of 16). This is called supernetting.  
 
Multiple IPv6 Addresses on a Single Node 
 
Unlike with IPv4, it is normal for IPv6 nodes to have multiple valid addresses. They don’t even all have to 
have the same subnet number (if you are running multiple subnet numbers on a single link). A single 
node could have addresses with each of the above 64-bit prefixes (or even multiple manually assigned 
addresses) at any given time. It could also have various multicast addresses. One of the unicast 
addresses (chosen at random) will be used as the source address of packets sent by that node, but 
incoming packets addressed to any of the addresses owned by the node will be accepted. 
 
A host is required to recognize any of the following addresses as referring to itself. Any node has most of 
these by default without anyone having to assign them. The default link-local address is created with 
Stateless Address Autoconfiguration even if there are no Router Advertisement messages. Solicited-
Node Multicast addresses are created and assigned automatically when unicast or anycast addresses are 
assigned. 
 

 The Loopback Address (::1) – always present 

 The All-Nodes Multicast Addresses (ff01::1, ff02::1, etc) – only the “on node” and “on link” 
scoped multicast addresses are created automatically – ones with larger scope must be 
specifically assigned to each node that you wish to accept such addresses. 

 The automatically generated link-local unicast address 
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 Any additional Unicast and Anycast Addresses that have been assigned to any of the node’s 
interfaces, manually or automatically 

 The Solicited-Node Multicast Address for each of its unicast and anycast addresses (created 
automatically for you when the corresponding unicast or anycast address is assigned) 

 Multicast Addresses for all other groups to which the node has subscribed 
 
A router (gateway) is required to recognize all addresses that a host is required to recognize, plus the 
following special addresses for routers, as identifying itself: 
 

 The Subnet-Router Anycast Address for all interfaces for which it is configured to act as a router 

 All other Anycast Addresses with which the router has been configured 

 The All-Routers Multicast Addresses (ff01::2, ff02::2, ff05::2) 
 
Automatically Generated Interface Identifiers based on EUI-64 
 
By default, Stateless Address Autoconfiguration will create a link-local address (fe80::w:x:y:z). If there is 
a Router Advertisement daemon configured and running on the link, the node will also automatically 
create a global unicast address by using the 64-bit subnet prefix form the Router Advertisement 
message. It can generate the interface identifier (low 64 bits) either from the node’s MAC address (using 
EUI-64), or can use a random 64 bit value. This is described in RFC 4291, “IP Version 6 Addressing 
Architecture” and RFC 2464 “Transmission of IPv6 Packets over Ethernet Networks”.  
 
An EUI-64 address is created by taking the first 24 bits of the MAC address (the Organizationally Unique 
Identifier), setting the 7th bit of this to 1 (counting rightward from the Most Significant Bit), appending 
the 16 bit value FFFE, then appending the last 24 bits of the MAC address (the device identifier). Hence, 
the 48 bit MAC address 
 
 00-18-8B-78-DA-1A 

 
produces an EUI-64 identifier of 
 
 0218:8BFF:FE78:DA1A 

 
This is a reversible mapping, so given an EUI-64 identifier, it is trivial to determine the MAC address of 
the node (discard the FFFE in the middle 16 bits and clear the 7th bit of the remaining 48 bit value). Note: 
the 7th bit in the first byte of all valid Organizationally Unique Identifiers, hence of all MAC addresses, 
will always be 0. 
 
One of the security advantages of IPv6 is supposed to be that the number of possible addresses in a 
subnet (264) is so large that it is impractical to scan all of them to discover all of the nodes on a subnet 
(this is called mapping a subnet). If EUI-64 interface identifiers are used, there are so few of these (in 
comparison to the total possible number of interface identifiers) that it is possible to scan for them 
(especially with the knowledge of which Organizationally Unique Identifiers are actually in use, which is 
not difficult to determine). 
 
Randomized Interface Identifiers 
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There are several privacy concerns related to using addresses with EUI-64 interface identifiers. One is 
the ability for a hacker to create a map of all nodes on the subnets via scanning. It would also be 
possible to identify any person’s traffic at any point through which the traffic flows, if you know the 
MAC address of their network interface. You could certainly associate various traffic flows that all have 
the same MAC address as coming from a single node. Normally MAC addresses never leave your LAN. 
With EUI-64 based IPv6 unicast addresses, MAC addresses can go anywhere in the world. Fortunately, 
there is a way to generate a random interface identifier instead of using the EUI-64 identifier. This is 
defined in RFC 4941, “Privacy Extensions for Stateless Address Autoconfiguration in IPv6”, September 
2007. The randomized identifier even changes automatically over time. I may have had that address 
yesterday, but today I’ve got a completely different one!  Interface identifier randomization is enabled 
by default in Windows 7, but it can be enabled or disabled with the following commands: 
 
 netsh interface ipv6 set global randomizeidentifiers=enabled 

 netsh interface ipv6 set global randomizeidentifiers=disabled 

 
The reason you might want to disable randomization is that some servers will only accept a connection 
from nodes for which they can perform a reverse DNS lookup. This often will fail with randomized 
identifiers. Note that use of randomized interface identifiers can make it very difficult to determine to 
whom specific traffic in a log belongs, unless a record is kept of randomized interface identifiers used by 
each node. 
 
When a randomized address changes, the old address is kept around for some time, but marked as 
deprecated, which means your node will not use it for further outgoing connections. You should accept 
incoming replies addressed to a deprecated address until it becomes invalid, which it eventually will be. 
Since you aren’t making new outgoing connections with it, replies to it will cease fairly quickly. 
Addresses with randomized interface identifiers are used primarily for outgoing connections (and replies 
thereto). A node that can accept incoming connections from anyone should have (possibly in addition to 
other addresses) a static (unchanging) unicast address which is published in DNS. This would be used by 
other nodes that want to connect to it. A node that only ever makes outgoing connections need not 
have such a static address assigned to it, and there is no need to publish its name and IPv6 address in 
DNS (at least not in your external DNS). Remember in IPv6, it is much more likely that other nodes will 
be connecting to your node (for VoIP, VPNs, P2P, etc). The age of NAT (and one-way connectivity) is 
over. 
 
 
IPv6 Address Allocation 
 
The standard allocation block to be given to organizations is a “/48”, which is 65,536 subnets, each of 
which is a “/64” block consisting of 264 or about 18 billion, billion addresses (about 4 billion times the 
total number of addresses in the First Internet). Some ISPs may choose to allocate only a single “/64” 
block to individuals or home users, who have no need for multiple subnets. It is not practical to allocate 
only a single IPv6 address (a” /128” block) to a user, due to the fact that nodes often create new 
addresses. One “/48” block will supply 65,536 individuals or homes with “/64” blocks. Perhaps I’m a bit 
unusual, but I already have two subnets in my home today (one dual stack, one IPv6-only). Who knows, I 
might have a bunch someday! My company has a “/48” (2001:df8:5403::/48) which we divided into 16 
“/52” sub-blocks, each of which have 4096 subnets. I have one of these “/52” sub-blocks (subnets 3000 
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to 3fff) routed to my house. That should just about take care of me for some time to come. A single 
“/64” block should work for most home users. 
 
ISPs are allocated really big “/32” blocks of addresses, which are enough to allocate “/48” blocks for up 
to 65,536 customers. Should they use up an entire “/32” block, there are plenty more “/32” blocks 
where that one came from (about 536 million of them just in the 2000::/3 block marked for allocation). 
The RIR’s (ARIN, RIPE, APNIC, LACNIC and AfriNIC) will be happy to give an ISP all they can use. If you 
assume there are 7 billion people alive, there are over 5000 “/48” blocks for every human alive, just out 
of the 2000::/3 range currently marked for allocation. It is extremely unlikely that any single human will 
ever be able to use any appreciable percentage of their “fair share” of addresses, let alone have the 
IANA run out. The folks in Taiwan say they want to connect 3 billion devices to the Internet in the next 
couple of years. This would take ¾ of the entire First Internet’s address space, but could be handled with 
a tiny fraction (less than 1 billionth) of a single “/64” block with IPv6, should they want to have them all 
in one block for some bizarre reason. It will be quite a while before anyone worries about IPv6 address 
space exhaustion (famous last words?) 
 
The People’s Republic of China believes that they were cheated out of sufficient IPv4 addresses to 
participate fully in the First Internet. By the time China started deploying TCP/IPv4, if they had taken all 
of the remaining addresses, over 90% of the people there would not have gotten one. The First Internet 
recently passed an interesting threshold. There are now more Chinese speaking users on it than English 
speaking users. If you recall the chart of allocated addresses in section 3.3.2.2 of this book) the U.S. has 
over 43% (28% ARIN + 15% Legacy, both of which are mostly U.S. users) of the total IPv4 address space 
for less than 5% of the world’s population. In comparison, APNIC, which includes China, India and 
several other populous countries (all together about 50% of the world’s population), has only 16% of the 
IPv4 address space. When the IPv4 addresses are all gone in September 2011, APNIC will probably still 
have less than 20% of the IPv4 address space (about .28 addresses per person), while the U.S. will 
probably have about 45% (about 6.4 addresses per person). However, note that about 1/3 of that 45% 
are held by less than 50 organizations (like M.I.T, Apple, HP, etc). The distribution of addresses in the 
First Internet was (and remains) anything but equitable. It’s really pretty much impossible to do anything 
about that now. We’re doing it right in the Second Internet. 
 
Should We Reserve Some IPv6 Addresses for Developing Nations? 
 
There has been talk from the ITU (International Telecommunication Union) about reserving some IPv6 
address space for developing nations to make absolutely certain that nobody ever gets left out again, as 
has happened in the First Internet. There are so many IPv6 addresses that there is essentially no chance 
of this ever happening. The ITU might as well try to reserve a few trillion grains of sand (maybe a dump 
truck’s worth) to make sure that every country can be assured of getting their fair share of them. The 
total number of IPv6 addresses is on the same general scale as the number of grains of sand on Earth. 
 
Note that block 2000::/3 (which you can also think of as blocks 2000::/16 through 3fff::/16) is currently 
the only part of the overall space marked for unicast address allocation. This is only 1/8 of the total IPv6 
address space. Even so, this is still 2125, or about 4.15 e+37 addresses. You can also view this as 245 
(about 35.2 trillion) “/48” blocks, or just over 5000 “/48” blocks per human alive in 2010 (using 
worldwide population as 7 Billion). Should we ever use this up, there is still at least 5.5 times that much 
space not used for anything (from 4000::/16 to efff::/16) that we could allow for additional allocation. 
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I personally don’t think there is any reason to reserve a special block of addresses for anyone, including 
developing nations. Unlike with IPv4, there are plenty of addresses for everyone this time around. 
 
The People’s Republic of China (and every other country) will have plenty of addresses in the Second 
Internet, and this is one reason they are investing so heavily in it. India is now determined to deploy IPv6 
nationwide, and should have quite a bit deployed by the end of 2010. The inequitable distribution of 
addresses in the First Internet may also account for some of the lack of urgency to migrate to the 
Second Internet in the United States. Unfortunately, it is not simply of matter of still having enough IPv4 
addresses. Imagine if the U.S. stayed with Standard Definition NTSC TV, while the entire rest of the 
world went with globally standard High Definition TV. The U.S. would not be able to export their 
programming to anyone else, nor import programming from the rest of the world. If they choose to stay 
with IPv4, they will be isolating themselves in some very serious ways. It’s not completely ridiculous to 
think that the U.S. might decide not to deploy the Second Internet. Look what happened with the metric 
system. If IPv4 is “riding horses” and IPv6 is “driving cars”, you don’t need to wait until the last horse 
dies before you get a car. The “cars” (IPv6) are ready and widely available today. Those who adopt cars 
first will leave those still riding horses way behind. I’d suggest you migrate to IPv6 as soon as possible. 
Countries that master it and start creating products and applications based on it will have a giant head 
start in the 21st century over those who wait until the last possible minute. 
 
How Is the Entire IPv6 Address Space Divided Up? 
 
Here are the official allocations of the IPv6 address space as of 13 May 2008 (from IANA), along with the 
RFCs that allocated the blocks listed: 
 
IPv6 Prefix           Allocation              Reference      Note 

-----------           ----------              ---------      ---- 

0000::/8              Reserved by IETF        [RFC4291]      [1] [5]  

0100::/8              Reserved by IETF        [RFC4291] 

0200::/7              Reserved by IETF        [RFC4048]      [2] 

0400::/6              Reserved by IETF        [RFC4291] 

0800::/5              Reserved by IETF        [RFC4291] 

1000::/4              Reserved by IETF        [RFC4291] 

2000::/3              Global Unicast          [RFC4291]      [3] 

4000::/3              Reserved by IETF        [RFC4291] 

6000::/3              Reserved by IETF        [RFC4291] 

8000::/3              Reserved by IETF        [RFC4291] 

A000::/3              Reserved by IETF        [RFC4291] 

C000::/3              Reserved by IETF        [RFC4291] 

E000::/4              Reserved by IETF        [RFC4291] 

F000::/5              Reserved by IETF        [RFC4291] 

F800::/6              Reserved by IETF        [RFC4291] 

FC00::/7              Unique Local Unicast    [RFC4193] 

FE00::/9              Reserved by IETF        [RFC4291] 

FE80::/10             Link Local Unicast      [RFC4291] 

FEC0::/10             Reserved by IETF        [RFC3879]      [4] 

FF00::/8              Multicast               [RFC4291] 

 

Notes: 

 

[0]  The IPv6 address management function was formally delegated to 

     IANA in December 1995 [RFC1881]. 

 

[1]  The "unspecified address", the "loopback address", and the IPv6 

     Addresses with Embedded IPv4 Addresses are assigned out of the 
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     0000::/8 address block. 

 

[2]  0200::/7 was previously defined as an OSI NSAP-mapped prefix set 

     [RFC4548]. This definition has been deprecated as of December 

     2004 [RFC4048]. 

 

[3]  The IPv6 Unicast space encompasses the entire IPv6 address range 

     with the exception of FF00::/8. [RFC4291] IANA unicast address 

     assignments are currently limited to the IPv6 unicast address 

     range of 2000::/3. IANA assignments from this block are registered 

     in the IANA registry: iana-ipv6-unicast-address-assignments. 

 

[4]  FEC0::/10 was previously defined as a Site-Local scoped address 

     prefix. This definition has been deprecated as of September 2004 

     [RFC3879]. 

 

[5]  0000::/96 was previously defined as the "IPv4-compatible IPv6 

     address" prefix.  This definition has been deprecated by [RFC4291]. 

 

 
The referenced RFCs are: 
 

 RFC 3879 – “Deprecating Site Local Addresses”, September 2004 (affects FEC0::/10) 

 RFC 4048 – “RFC 1888 is Obsolete”, April 2005 (dropping mapping of OSI addresses) 

 RFC 4193 – “Unique Local IPv6 Unicast Addresses”, October 2005 

 RFC 4291 – “IP Version 6 Addressing Architecture”, February 2006 
 
The 6bone was an early worldwide IPv6 testbed. It used addresses from 3ffe::/16  (as per RFC 2471, 
“IPv6 Testing Address Allocation”, December 1998). These have since been returned to the overall 
allocation pool as per RFC 3701, “6bone (IPv6 Testing Address Allocation) Phase-out”, March 2004, once 
the 6bone had served its purpose and was shut down. Interestingly, some addresses from this block still 
show up on the IPv6 backbone. 
 
Currently, the RIR’s have the following number of “Default Free Prefixes” that actually have traffic on 
the backbone: 
 
 RIPE  1998 

 ARIN  1207 

 APNIC    852 

 LACNIC  267 

 AfriNIC   82 

 

Here are the top ten countries plus a few from Asia (from SixXS, 24 Jan, 2010) ranked by number of IPv6 
prefixes allocated. “V” means visible (actual traffic detected), “A” means allocated (obtained from an ISP 
or RIR), and “VP” is the percentage of all allocated blocks that are visible (total for the world would be 
100%). 
 
Rank Country    V     A    VP 

 

 1 United States  422 1143 9.30% 

 2 Germany   179  324 3.24% 

 3 United Kingdom  100  225 2.20% 

 4  Netherlands   102  176 2.25% 
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 5  Japan     93  176 2.05% 

 6 Australia    41  152 0.90% 

 7 Russia    54  117 1.19% 

 8 France    49  111 1.08% 

 9 Brazil    29  106 0.64% 

10 Switzerland    56   102  1.23% 

 

19 Korea     15    58  0.33% 

20 China     21    54  0.46% 

24 India      7   36  0.15% 

31 Taiwan    19   33  0.42% 

33 Vietnam     4    28  0.09% 

34 Philippines     8    27  0.18% 

35 Thailand    12    27  0.26% 

 

Note that this data does not reflect actual number of addresses or volume of traffic, just the number of 
distinct 48 bit prefixes, which is a rough indication of the number of organizations investigating IPv6. 
Much of this in the U.S. is probably research or academic. As percentages of the gigantic total number of 
“/48” blocks available for allocation, all of these are essentially zero (pretty much all of the2000::/3 IPv6 
address space is still available for allocation). This is more an indication of the colossal size of the IPv6 
address space, than of any lack of interest or activity. 
 
Classless Inter-Domain Routing (CIDR) 
 
There is no reason to define CIDR for IPv6, because it was done in IPv4 only to extend the lifetime of the 
IPv4 address space long enough for IPv6 to be fully developed, which has now happened. There is no 
need to extend the lifetime of the IPv6 address space. If IPv6 had been ready, and we had migrated to it 
in the mid 1990s, we would never have had to suffer through the complexities brought about by CIDR 
and NAT. The reason we are having to deal with these issues today is that we have already stayed with 
IPv4 far too long. Imagine trying to do serious work today with an 8 bit processor and 64K bytes of RAM. 
 
Network Ports 
 
Network ports work exactly the same way under IPv6 as they do in IPv4. There are still 65,536 of them 
associated with every IPv6 address. They could have gone to 32 bit port numbers (yielding 4.3 billion 
ports for each address), but this would have required even more changes in packet headers and other 
places, so this was not done. 65,536 is plenty for almost any need, especially since you can assign any 
number of global unicast addresses to a single interface (each of which has 65,536 ports). The same Well 
Known Port numbers are used in IPv6. The only difference is that you will never see port numbers on 
IPv6 addresses being shifted by a NAPT gateway, since there is no NAT for IPv6 to IPv6. Note that a given 
port being used over IPv4 does not prevent it from being used by the same or even a different 
application, over IPv6 (and vice versa).  
 

 
5.3.2.3 – Subnetting in IPv6 
 
There is no CIDR in IPv6 (although the CIDR “slash notation” is still used). As a result, subnetting is much 
simpler in IPv6. All subnets are “/64”. The only exception is if you do supernetting (e.g. a “/60” subnet) 
to allow multiple “/64” blocks to be used on a single network link. This will likely only be done in large, 
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advanced corporate networks, so most network engineers will never see anything but “/64” subnets. 
The only reason for doing this might be to use different “/64” subnets for specific purposes, such as 
1000 for SAA, 1001 for DHCPv6 assigned addresses and 1002 for manually assigned addresses. If you use 
EUI-64 interface identifiers for SAA, it is not difficult to partition a single “/64” so there will be no 
overlap between SAA, DHCPv6 and manual assignments. If you use random interface identifiers, they 
may fall anywhere a “/64” address space. However, the probability of one colliding with an address 
assigned manually or via DHCPv6 stateful mode is incredibly low, and Duplicate Address Detection 
should prevent the odd collision. Having at least two “/64” subnets in a single network (one for SAA, one 
for manual and DHCPv6 assigned addresses) removes all possibility of an address collision. 
 
Each subnet needs to be at least a “/64”, since EUI-64 can generate “node within subnet” values that 
are 64 bits long. Randomized interface identifiers are also 64 bits in length. But a “/64” subnet is already 
larger than any organization could conceivably use (18 billion, billion addresses). There are so many 
“/64” blocks in a single “/48” (65,536) that we can use them even for subnets between a border router 
and a firewall, which have only two addresses. There is never an excuse to use any subnet smaller than a 
“/64”, although I have seen some old-school IPv4 trained administrators allocate “/124” IPv6 subnets for 
the link between a border gateway and firewall case (in IPv4, tiny subnets like /30 would be used in such 
a case). Old habits die hard. After living with increasing scarcity with IPv4 addresses, it is hard for some 
of us to realize that there are PLENTY of addresses this time around. 
 
 
5.3.2.4 – Link Layer Addresses 
 
The software in the Application Layer, the Transport Layer, and the Internet Layer of the TCP/IPv6 stack 
think in terms of IP addresses. But the Link Layer (and the hardware) thinks in terms of MAC addresses. 
In IPv6 the mapping from IPv6 address to Link Layer (MAC) address is done with the Neighbor Discovery 
protocol. Note that in this book, I often use the terms Link Layer Address and MAC address 
interchangeably.  
 
NOTE: A Link-Layer address is a “MAC address” only for Ethernet based network hardware (and a few 
others), so when I use the term MAC address, think “physical layer address for the actual network 
hardware in use”. The term Link-Layer address is more accurate (a MAC address is just a special case of 
Link Layer Address), but it is easy to confuse it with the similar sounding term link-local address. Just 
realize that if the actual network in use is not Ethernet there may be some other name for the physical 
layer addresses that IP addresses have to be mapped onto, and it may not look anything like the 48 bit 
MAC address. 
 
IPv6 addresses are not actually used at the lowest layer of the TCP/IPv6 network stack (the Link Layer). 
The 48 bit MAC addresses covered in the TCP/IPv4 chapter still exist and are used the same way at the 
Link Layer (at least for Ethernet networks). 
 
Neighbor Discovery Protocol (ND) 
 
There is no ARP (Address Resolution Protocol) in IPv6. The new ND (Neighbor Discovery) protocol which 
is defined in RFC 4861 “Neighbor Discovery for IP version 6 (IPv6)”, September 2007, accomplishes the 
same thing, and many other functions as well, including: 
 



115 

 

 Router Discovery: hosts can locate router(s) residing on any link it is attached to 

 Prefix Discovery: hosts can discover the correct 64 bit prefix for any link it is attached to 

 Parameter Discovery: hosts can determine the correct IPv6 parameters, for any link it is attached 
to, such as MTU 

 Stateless Address Auto configuration (SAA): hosts can automatically obtain a link local address; 
and, if a Router Advertisement Daemon exists, also a global unicast address 

 Address Resolution: mapping IPv6 addresses to MAC addresses (as the replacement for ARP) 

 Next-hop Determination: hosts can determine next-hop router for a given destination address 

 Neighbor Unreachability Detection (NUD): determine that a given neighbor is no longer 
reachable on any attached link (there is no corresponding IPv4 functionality) 

 Duplicate Address Detection (DAD): hosts can determine if a proposed address is already in use 

 Redirect: router can inform a host about a better (or working) first-hop 
 
There are five ICMPv6 messages that ND uses to accomplish these things: 
 

 Router Solicitation– Request a Router Advertisement message 

 Router Advertisement – Router advertises the 64-bit prefix and parameters for a link, usually 
sent by a Router Advertisement Daemon living in a gateway router or firewall. The Router 
Advertisement Daemon can send different information into each attached link, if there are 
multiple links. This also tells nodes whether or not there is a DHCPv6 server available. 

 Neighbor Solicitation– any node can say “howdy neighbor” to another node to see if it responds 

 Neighbor Advertisement– response to a “howdy neighbor” message from someone else 

 Redirect– A router can inform any node that there is a better first-hop available than one it has 
just tried (“there’s a bridge out along that road, try going down this road”), based on its 
discovered knowledge of the surrounding network 

 
By the way, some people us “NDP” as the acronym for the Neighbor Discovery protocol (see Wikipedia). 
If you read the RFCs, the creators of the protocol use just “ND”, so we will use that convention in this 
book. The acronyms of some protocols include the “P” (for Protocol) in the acronym (e.g. TCP), while 
others don’t (like MLD). I follow the conventions used in the RFCs. 
 
IPv6 Router Advertisement messages carry link-layer (MAC) addresses, so no additional packet exchange 
is required to resolve the router’s link-layer address. They also carry prefixes, so no separate mechanism 
is needed to configure a netmask. 
 
By using link-local addresses to uniquely identify routers, hosts can maintain router associations. This 
capability is necessary for Router Advertisements, and for redirects. Hosts need to maintain router 
associations if the site switches to a new global prefix. 
 
ND is immune to spoofing attacks that originate from off-link nodes. In IPv4, off-link nodes can send 
ICMPv4 Redirect messages, and IPv4 Router Advertisement messages. 
 
In the following, DAD refers to Duplicate Address Detection, which is one of the functions performed by 
ND. Addresses may be in any one of the following states at any given time: 
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 TENTATIVE – generated, but not yet determined by DAD to be unique – can be used only for 
sending and receiving ND messages for DAD 

 DUPLICATED – generated, and determined by DAD  to be duplicated (hence unusable) 

 PREFERRED – generated , and determined by DAD to be unique (hence valid) 

 DEPRECATED – a preferred address that has passed its preferred lifetime (still valid, and 
incoming packets addresses to it will be accepted, but no further outgoing packets will be sent 
using it) 

 INVALID – a deprecated address that has passed its valid lifetime (may no longer be used for 
sending or receiving packets) 

 
Here are the details of the various functions that ND can perform: 
 
Router Discovery – at any time (but typically at power on), any node can determine the link-local 
address of the router(s) on the local link. 
 

Step 1 – the node sends a Router Solicitation message to the “all routers on link” multicast 
group (ff02::2). If the node’s link local address has already been created, then that will be used 
as the source address, else the unspecified address (“::”) will be used as the source address.  
 
Step 2 – All routers on the link will respond with Router Advertisement messages, usually to the 
“all nodes on link” multicast group (ff02::1), but if the source address of the Router Solicitation 
message was a link-local address the router can choose to send the Router Advertisement 
message directly to that address. The source address of each received Router Advertisement 
message is added to a default gateway table (from which the preferred link-local default 
gateway will be chosen). The Prefix Information option in all of the responses should be the 
same, so the subnet prefix from the last received Router Advertisement message will be used. 
 

IPv6 Router Discovery corresponds roughly to IPv4 Router Discovery (which was defined in RFC 1256, 
“ICMP Router Discovery Messages”, September 1991), but in IPv6 it is a part of the base protocol. There 
is no need for hosts to snoop the routing protocols to discover a router. IPv4 router discovery contains a 
preference field, which is not needed in IPv6 Router Discovery because of Neighbor Unreachability 
Detection. IPv4 Router Advertisements and Solicitations (ICMP type 9) work only with multicast capable 
IPv4 routers, and are not commonly used. All IPv6 nodes support multicast, and Router Advertisements 
are a fundamental part of almost every non-trivial network. 
 
Address Resolution (Mapping IPv6 addresses to MAC addresses) 
 
Say Alice (one IPv6 node) is trying to send a packet to Bob (another IPv6 node). Address resolution is 
done as follows: 
 

Step 1 – Alice checks her Neighbor Cache (similar to the ARP cache in IPv4) to see if it already 
has an entry for Bob. If it does, then Alice sends the packet immediately to Bob using Bob’s MAC 
address from the table, and she is finished. If Alice’s Neighbor Cache table doesn’t have an entry 
for Bob, the process continues. 
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Step 2 – Alice adds a new Neighbor Cache entry for Bob, in the INCOMPLETE state. Alice then 
sends a Neighbor Solicitation message to Bob, using Bob’s solicited-node multicast address as 
the destination address. Any of the addresses assigned to Alice’s interface can be used as the 
source address of this packet, but if possible it should match the source address of the original 
packet Alice wanted to send. Alice includes her MAC address as the Source Link-layer Address 
option in this packet. This insures Bob will have her MAC address when it’s time for him to reply.  
 
Step 3 – Bob receives the Neighbor Solicitation message, and responds with a Neighbor 
Advertisement message, sent to Alice’s MAC address.  
 
Step 4 – Alice receives the Neighbor Advertisement message from Bob, and then updates Bob’s 
entry in her Neighbor Cache 
 
Step 5 – Alice can now send the original packet she wanted to send to Bob using his MAC 
address. 

 
Prefix Discovery 
 
At any time, a node can discover the default A Router Advertisement message can contain up to three 
“options”:  
 

 the Source Link-Layer Address (the sending router’s MAC address) 

 the MTU (the maximum packet size supported on this link) 

 the Prefix Information (the preferred address prefix for this subnet).  
 
When a router sends an unsolicited Router Advertisement message, it includes all three options. In a 
solicited Router Advertisement message, at least the Prefix and MTU options will be included, so in 
either case, the node will obtain the preferred prefix for the link. 
 

Step 1 – The node wanting to discover the subnet prefix sends a Router Solicitation message, 
using its own link-local address as the source, and the “all routers in local link” multicast group 
(ff02::02) as the destination address. 
 
Step 2 – All routers on the local link respond with Router Advertisement messages, with their 
own local-link address as source and the “all nodes on local link” multicast group (ff02::1) as the 
destination. The Router Advertisement message includes at least the subnet prefix option. This 
prefix is extracted from the prefix option, and stored as the subnet prefix. All routers will 
respond with the same prefix, but the last Router Advertisement message received will have the 
subnet prefix that is used. 
 

Duplicate Address Detection (DAD) 
 
DAD is used to determine if a proposed (tentative) address is a duplicate of any address on the local link. 
Both hosts and routers perform DAD on all unicast and anycast addresses regardless of how they are 
obtained (Stateless Address Autoconfiguration, DHCPv6 or even manual assignment). DAD is 
accomplished using Neighbor Solicitation and Neighbor Advertisement messages. 
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Step 1 – The node owning the tentative address sends a number of Neighbor Solicitation 
messages using the unspecified address (::) as the source address, the Solicited-node multicast 
address as the destination address and the TENTATIVE address as the target address.  
 
Step 2 – If any node on the link is already using the TENTATIVE address, it will respond by 
sending a Neighbor Advertisement to the “all nodes on local link” multicast group (ff02::1). If no 
such response is seen during a short interval (configurable), then the TENTATIVE address is 
considered to be unique. 
 

Stateless Address Autoconfiguration (SAA) 
 
This is one of the most important aspects of IPv6. It is primarily to allow IPv6 capable hosts (as opposed 
to routers) to automatically obtain address information (link local and global unicast node addresses and 
link-local default gateway), but routers still use it to generate and validate their link local addresses. The 
process makes strong use of link-local and multicast addresses, and all network communication is done 
with ICMPv6 messages that are part of ND. If a source of Router Advertisement messages is available, 
then at least one global unicast IPv6 address will also be generated. The acronym for Stateless Address 
Autoconfiguration is “SAA”. 
 
There are four steps involved in Stateless Address Autoconfiguration: 
 

Step 1 – the node creates a 64-bit interface identifier. This can be created using the MAC 
address and the EUI-64 algorithm, or can be a randomly generated value (“randomized interface 
identifier”). 
 
Step 2 – the host creates a TENTATIVE link-local address. This is done by appending the chosen 
interface identifier to the prefix fe80://10. DAD is performed to determine if the link-local 
address is unique. If so, that address goes to the PREFERRED state, its lifetime starts counting, 
and the process continues. If the address is duplicated the address goes to the DUPLICATED 
state, the interface is disabled, and the SAA process fails without having generated any 
addresses. 
 
Step 3 – the host sends a Router Solicitation message to the “all routers on link” multicast group 
(ff02::2). If the node’s link local address has already been created, then that will be used as the 
source address, else the unspecified address (“::”) will be used as the source address. All routers 
on the link will respond with Router Advertisement messages, usually to the “all nodes on link” 
multicast group (ff02::1), but if the source address of the Router Solicitation message was a link-
local address the router can choose to send the Router Advertisement message via unicast to 
just that address. The source address of each received Router Advertisement message is added 
to a default gateway table (from which the preferred link-local default gateway will be chosen). 
The Prefix Information option in all of the responses should be the same, so the subnet prefix 
from the last received Router Advertisement message will be used. 
 
If no router responds to the Router Solicitation message within a certain time, then the SAA 
process terminates, having created a valid link-local node address, but no link-local default 
gateway and no global unicast address. 
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Step 4 – if we reach this step, a valid Router Advertisement was received with a subnet prefix, so 
the host combines the discovered subnet prefix with the created interface identifier, to create a 
TENTATIVE global unicast address for the node. DAD is performed on the tentative global 
unicast address, and if the address is unique, it goes to the PREFERRED state and its lifetime 
starts counting. If not, the address goes to the DUPLICATED state, the interface is disabled, and 
the SAA process terminates, again having created a valid link-local address and a link-local 
default gateway address (but no global unicast address). 

 
Anytime a link-local or global address lifetime expires (enters the INVALID state), address regeneration is 
done. If using randomized interface identifiers, a different random interface identifier is created for each 
address regeneration. If using EUI-64 interface identifiers, the regeneration process basically just 
confirms that the addresses are still valid – they don’t actually change. If something has changed since 
the last validation (e.g. gateway down, link broken, etc), the SAA process may fail and the address 
marked INVALID. 
 
Next-hop Determination 
 
When one node needs to send a packet to another node, the sending node must determine whether the 
destination address is on-link or off-link. To be considered on-link, the address must match at least one 
of the following criteria: 
 

 The prefix of the address must match one of the prefixes assigned to the link 

 The address is the target of a Redirect message sent by a router 

 The address is the target address of a Neighbor Advertisement message 

 The address is the source address of any Neighbor Discovery message received by the node 
 
If the address is on-link then the next-hop address is the same as the destination address. If the address 
is off-link then the next-hop address is selected from the default router list. 
 
Neighbor Unreachability Detection (NUD) 
 
Each entry in the Neighbor Cache contains the IP address, the link-layer (MAC) address, and the 
reachability status for that node. There are five possible values for that status, and the state transition 
rules are as follows: 
 

 INCOMPLETE – cache entry is newly created, and address resolution is in progress. Any 
transmitted packets are queued. When the address resolution completes, the link-layer address 
is added into the Neighbor Table, and the state changes to REACHABLE. 

 REACHABLE – any queued packets are immediately sent. Any newly transmitted packets are sent 
normally. If more than a certain time passes without any traffic to or from the address, the state 
changes to STALE. 

 STALE – the reachability of the node is UNKNOWN. The address remains in this state until traffic 
to that node is generated. At that point, the traffic is queued and the state changes to DELAY. 

 DELAY – the address remains in the DELAY state for a short period. The status is still UNKNOWN. 
Once the delay expires, the probe packet is sent, and the state changes to PROBE. 
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 PROBE – a probe packet has been sent to determine reachability (after the delay), but the result 
has not yet been obtained. The status is still UNKNOWN. When the result is seen, REACHABILITY 
is confirmed, the state changes to REACHABLE. If a certain amount of time elapses without any 
response, then the node is considered unreachable, any queued traffic is discarded, and an error 
is generated to the sender. 

 
Note that there is nothing comparable to NUD in IPv4. IPv6 NUD improves packet delivery in the 
presence of failing routers, and over partially failing or partitioned links. It improves delivery to nodes 
that change their link-layer (MAC) addresses. For example, mobile nodes can move off-link without 
losing any connectivity due to stale ARP caches. NUD detects dead routers and dead switches that block 
access to working routers. 
 
Redirect 
 
A router can send a Redirect message to a packet sender, if there is a better first-hop router, or if the 
destination is an on-link neighbor. In the first case, the Target Address field contains the link-local 
address o f the better first-hop router. In the second case, the Target Address field contains a copy of 
the Destination Address. The Destination Address field contains the address of the ultimate packet 
destination. The router uses its knowledge of the larger environment to generate this information. You 
might think of a Redirect message as saying something like “There is a bridge out down that road – try 
going down this road, instead”. 
 
IPv6 Redirects contain the link-layer (MAC) address of the new first hop, which eliminates the need for 
an additional packet exchange to resolve the IP address. Unlike with IPv4 Redirects, the recipient of an 
IPv6 Redirect assumes that the new next-hop is on-link. The IPv6 Redirect is useful on non-broadcast 
and shared media links. On such links, nodes should not check for all prefixes for on-link destinations. 
 
Viewing the Neighbor Cache 
 
To view the Neighbor Cache in Windows 7: 
 
1. Start a Command Prompt (cmd), and enter the following commands in it 
2. Enter the command netsh –c “interface ipv6” 
3. At the netsh prompt, enter the command show interface 
4. In the resulting list, find the interface index for “Local Area Connection” (say it is 11) 
5. At the netsh prompt, enter the command show neighbors 11 (or whatever interface index)  
6. You should see global unicast addresses, link-local addresses, and a lot of multicast addresses. 
 
C:\>netsh -c "interface ipv6" 

netsh interface ipv6>show interface 

 

Idx     Met         MTU          State                Name 

---  ----------  ----------  ------------  --------------------------- 

  1          50  4294967295  connected     Loopback Pseudo-Interface 1 

 12          50        1280  disconnected  isatap.infoweapons.com 

 13          50        1280  connected     Local Area Connection* 11 

 11          10        1500  connected     Local Area Connection 

 

netsh interface ipv6>show neighbors 11 
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Interface 11: Local Area Connection 

 

 

Internet Address                              Physical Address   Type 

--------------------------------------------  -----------------  ----------- 

2001:df8:5403:2410::fff2                      00-15-17-30-b8-ec  Reachable (Router) 

2001:df8:5403:2410::10:11                     00-e0-81-48-62-7a  Stale 

fe80::215:17ff:fe30:b8ec                      00-15-17-30-b8-ec  Reachable (Router) 

fe80::230:48ff:fe61:d6be                      00-30-48-61-d6-be  Stale 

ff02::2                                       33-33-00-00-00-02  Permanent 

ff02::c                                       33-33-00-00-00-0c  Permanent 

ff02::16                                      33-33-00-00-00-16  Permanent 

ff02::1:2                                     33-33-00-01-00-02  Permanent 

ff02::1:3                                     33-33-00-01-00-03  Permanent 

ff02::1:ff00:69                               33-33-ff-00-00-69  Permanent 

ff02::1:ff00:fff2                             33-33-ff-00-ff-f2  Permanent 

ff02::1:ff03:186                              33-33-ff-03-01-86  Permanent 

ff02::1:ff10:11                               33-33-ff-10-00-11  Permanent 

ff02::1:ff10:14                               33-33-ff-10-00-14  Permanent 

ff02::1:ff10:26                               33-33-ff-10-00-26  Permanent 

ff02::1:ff13:f5                               33-33-ff-13-00-f5  Permanent 

ff02::1:ff2b:6589                             33-33-ff-2b-65-89  Permanent 

ff02::1:ff30:b8ec                             33-33-ff-30-b8-ec  Permanent 

ff02::1:ff3f:58e5                             33-33-ff-3f-58-e5  Permanent 

ff02::1:ff61:d6be                             33-33-ff-61-d6-be  Permanent 

ff02::1:ff62:62                               33-33-ff-62-00-62  Permanent 

ff02::1:ffc6:ed59                             33-33-ff-c6-ed-59  Permanent 

ff02::1:ffce:5d59                             33-33-ff-ce-5d-59  Permanent 

ff05::1:3                                     33-33-00-01-00-03  Permanent 

 

 

SEcure Network Discovery (SEND) 
 
Note that there are some potentially exploitable vulnerabilities in ND. ARP in TCP/IPv4 has several well 
known and easily exploited vulnerabilities, used in many hacking attacks. For details of these 
vulnerabilities, search for “ARP Vulnerabilities Black Hat”). You should find an excellent PowerPoint 
presentation that was presented by Mike Beekey at a Black Hat Briefing security conference. It shows 
exactly how ARP is vulnerable, and how this is exploited by hackers. 
 
A secure version of ND is defined in RFC 3971, “SEcure Neighbor Discovery (SEND)”, March 2005. This is 
still a Proposed Standard. SND uses cryptographically generated addresses which are defined in RFC 
2972 “Cryptographically Generated Addresses (CGA)”, March 2005 (this is also a Proposed Standard and 
has already been updated by RFCs 4581 and 4982). SND does not depend on IPsec. It is still very much in 
an experimental status as of the writing of this book. 
 
 
5.3.3 – Types of IPv6 Packet Transmission 
 
Unicast, anycast, multicast and broadcast have already been covered in section 5.3.2.2, because in IPv6, 
this is considered to be part of the addressing model. 
 
 
5.3.3.1 – IPv6 Broadcast 
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Most things that you would use broadcast for in IPv4, you would use some form of multicast, with a 
more restricted scope, in IPv6. A multicast transmission to the address ff01::2 would go to the same 
nodes (all nodes on local link) as an IPv4 broadcast. However, there are other scopes, such as site, 
organization and global for multicast, that (unlike IPv4 broadcast) will cross routers, but other than “all 
nodes in local link”, multicast to the wider scopes requires that all recipients intentionally add the 
necessary multicast address to their node.  
 
 
5.3.3.2 – IPv6 Multicast 
 
The basic multicast address type has been covered, but there is a lot more to a full multicast system, as 
you saw in section 3.3.3.2 (IPv4 Multicast). For an in-depth discussion of all aspects of IPv6 Multicast, I 
recommend Chapter 6, “Providing IPv6 Multicast Services” from the book “Deploying IPv6 Networks”, by 
Ciprian Popoviciu, Eric Levy-Abegnoli and Patrick Grossetete, Cisco Press, 2006. 
 
Multicast exists in IPv4, but there are some serious problems with it, which are resolved in IPv6: 
 

 Not all IPv4 routers support multicast. In general it is difficult to deploy except in a “walled 
garden”, such as the customers of a single ISP like Comcast. In IPv6, support for multicast is 
mandatory – all compliant routers support it, and it works across ISPs, even worldwide. 

 The Internet Group Management Protocol (IGMP) is not part of TCP/IPv4, and not all IPv4 
routers include it. In IPv6, the Multicast Listener Discovery protocol (MLD) is standardized, and is 
actually just a subset of the ICMPv6 messages, hence all IPv6 compliant routers include it. 

 Multicast in IPv4 was an afterthought, grafted on long after the original protocol was designed. 
In IPv6, multicast was designed in from the beginning, and is present in all address scopes. 
Multicast link-local addresses are used extensively in SAA and other places. 

 
For IPTV applications, IPv6 networks will be the first time that really global Internet TV services can be 
deployed and work reliably. This is as exciting as when Ted Turner first relayed the signal from his small 
UHF TV station via a satellite. That breakthrough resulted in WTBS, CNN, CNN Headline News, TNT, 
Cartoon Network, and indirectly, the entire multi-billion dollar satellite / cable television network 
industry. 
 
There are many other areas in which working, scalable multicast can be used to improve applications. 
You could build chat, VoIP or even video conferencing clients that could build fully meshed networks, 
with each new participant subscribing to all existing client’s multicast “channels”, and all existing clients 
subscribing to the new participant’s multicast “channel”. Even if the initial participant left, all remaining 
participants would still have a fully functional mesh network. This also eliminates the need for any 
central exchange point (other than perhaps a search or directory facility to help in setting up the 
conference and allowing participants to locate each other). 
 
The following standards are relevant to multicast in IPv6: 
 

 RFC 2375, “IPv6 Multicast Address Assignments”, July 1998 (Informational) 

 RFC 2710, “Multicast Listener Discovery (MLD) for IPv6”, October 1999 (Standards Track) 
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 RFC 3306, “Unicast-Prefix-based IPv6 Multicast Addresses”, August 2002 (Standards Track) 

 RFC 3307, “Allocation Guidelines for IPv6 Multicast Addresses”, August 2002 (Standards Track) 

 RFC 3590, “Source Address Selection for the Multicast Listener Discover (MLD) Protocol”, 
September 2003 (Standards Track) 

 RFC 3810, “Multicast Listener Discovery Version 2 (MLDv2) for IPv6”, June 2004 (Standards 
Track) 

 RFC 3956, “Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address”, 
November 2004 (Standards Track) 

 RFC 4489, “A Method for Generating Link-Scoped IPv6 Multicast Addresses”, April 2006 
(Standards Track) 

 RFC 4607, “Source-Specific Multicast for IP”, August 2006 (Standards Track) 
 
 
Multicast Listener Discovery Protocol (MLD) 
 

MLD is used by IPv6 routers to discover the presence of multicast listeners (nodes that wish to receive 
multicast packets), and the specific multicast addresses to which they want to subscribe. MLD (defined 
in RFC 2710) is commonly referred to as MLDv1. It is the IPv6 equivalent to IPv4’s IGMPv2 (defined in 
RFC 2236). MLDv1 and IGMPv2 multicast protocols are used to set up Any-Source Multicast (ASM), 
which allows multiple sources in a group (*,G) or “channel”. This is also known as traditional multicast.  
 
MLDv2 extends the definition of MLDv1 by adding support for “source filtering”. It includes all of the 
functionality of MLDv1, so there is no need to deploy both on a given node. This allows a node to 
indicate interest only in packets from specific source addresses (INCLUDE mode), or in packets from all 
multicast addresses except for specific source addresses (EXCLUDE mode). MLDv2 is the IPv6 equivalent 
of IPv4’s IGMPv3. MLDv2 and IGMPv3 multicast protocols are used to set up Source-Specific Multicast 
(SSM), which allows a specific source (S) in a group (G) to deliver packets to all members that join (S,G) 
known as a “channel”. This is described in RFC 4604, “Using Internet Group Management Protocol 
Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version2 (MLDv2) for Source-Specific 
Multicast”, and in RFC 4607, “Source-Specific Multicast (SSM) for IP”. 
 
There is another RFC that defines MLD proxying:  RFC 4605, “Internet Group Management Protocol 
(IGMP) / Multicast Listener Discovery (MLD)-Based Multicast Forwarding (“IGMP/MLD Proxying”). A 
proxy would exist on a forwarding gateway that links together multiple subnets, and relay messages 
across that gateway between an MLD querier on one subnet and MLD listeners on a different subnet. 
 
MLDv1 and MLDv2 are sub-protocols of ICMPv6. All MLDv2 messages are just additional ICMPv6 
messages. All IPv6 compliant devices should include support for MLD. MLD messages must be sent with 
a link-local IPv6 Source Address, a Hop Limit of 1, and an IPv6 Router Alert Option in the Hop-by-hop 
option extension packet header. When used in Neighbor Discovery protocol’s Stateless Address 
Autoconfiguration, the source address can be the unspecified address (::). IGMP is not a sub protocol of 
ICMPv4. It does not use ICMPv4 messages, but an entirely new protocol. IGMP is not mandatory on all 
IPv4 routers. 
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MLD can co-exist with IGMPv3 in a dual-stack network, as MLD (v1 or v2) will only involve IPv6 
messages, and IGMP (v1, v2 or v3) will only involve IPv4 messages. However, in general, multicast will 
work far better on IPv6 than on IPv4. 
 
With MLD, there is a “router role” (performed by at most one router in a subnet) and a “listener role” 
(performed by any number of listener nodes in that subnet) in the protocol.  
 
For the router role, only one router on a subnet can be the Querier at any given time. If there is more 
than one router on a subnet, there is an election mechanism that selects one of them to be the Querier. 
Should that router fail at some point, all other routers on that subnet have been listening in and 
maintaining state, so another election will select one of the surviving routers on that subnet to become 
the Querier. Only the Querier sends periodic or triggered query messages on its subnet. 
 
There are three types of MLDv2 query messages sent by the Querier to the “all nodes on local link” 
multicast address (ff02::1). They should be sent with a valid IPv6 link-local source address. Any Query 
message received with the Source Address being the unspecified address (::), or any other address that 
is not a valid IPv6 link-local address, should be silently discarded. 
 

 General Queries  

 Multicast Address Specific Queries 

 Multicast Address and Source Specific Queries 
 
There are two types of reports sent by listeners to the Querier, to a special multicast address (ff02::16) 
to which all MLDv2 compliant multicast routers listen. If a single Report message is not large enough to 
hold all of the state information, multiple Report messages can be sent. 
 

 Current State Report (sent in response to a Query) 

 State Change Report (sent unsolicited in response to some change on the listener) 
 
General Queries are sent from the Querier to all listeners on the subnet periodically to learn multicast 
address listener information, to build and refresh state inside all multicast routers on the subnet. Even 
though only the Querier sends out periodic queries, all routers listen to the responses, and update their 
state. 
 
When a listener node gets a General Query message, it responds by sending a Current State Report, with 
its per-interface state information. It is also possible for a listener node to immediately report a state 
change (such as someone “unsubscribing” to a multicast channel) through an unsolicited State Change 
Report. Current State Reports are sent only once (if one is lost, it will probably be received in response 
to the next periodic Query). State Change Reports are sent multiple times for robustness (to increase the 
probability of all routers getting the message). 
 
When the Querier gets a State Change Report from a listener, it sends a Multicast Address Specific Query 
to see if there are still any other listeners to that multicast address. If not, the Querier will delete that 
multicast address from its Multicast Address Listener state table, which stops relaying the corresponding 
traffic. If there are source specific listeners, the Querier will send a Multicast Address and Source Specific 
Query instead. 
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There must be a service interface (API routines) available, which allows an application to cause a State 
Change Report to be sent to the Querier.  A sample API is documented in RFC 3678, “Socket Interface 
Extensions for Multicast Source Filters”, January 2004. The full API includes the ability to JOIN or LEAVE a 
multicast group (“subscribe to a multicast channel”), and to BLOCK and UNBLOCK specific source 
addresses, as well as to set and retrieve source filter sets. 
 
For details on the syntax of the various MLDv2 messages, see RFC 3810. 
 
 
5.3.3.4 – Protocol Independent Multicast (PIM) for IPv6 
 
PIM is a multicast protocol which deals with router-to-router communications. IPv6 PIM is similar to 
IPv4 PIM, has the same variants (Dense Mode, Sparse Mode, and Bidirectional Mode), and is defined in 
the same RFCs (in the sections relevant to IPv6). The IPv6 implementation uses Neighbor Discovery 
protocol, Multicast Listener Discovery protocol, Path MTU Discovery and IPv6 Multicast, rather than the 
corresponding IPv4 mechanisms. As with TCP, the PIM message checksum factors in the source and 
destination IP addresses, so the pseudo-header used in the calculation of the checksum (which includes 
IPv6 addresses) is different from the one used in IPv4. The following items are IP version specific in all 
variants: 
 
 Item    IPv4   IPv6 
 Source-Specific Multicast 232.0.0.0/8  ff3x:/32 
 Wildcard Group set  224.0.0.0/3  ff00::/8 
 ALL-PIM-ROUTERS group 224.0.0.13  ff02::d 
 
PIM for IPv6 does not include routing, but provides multicast forwarding by using static IPv6 routes, or 
routing tables created by IPv6 unicast routing protocols, such as RIPng, OSPFv3, IS-ISv6 or BGP4+. 
 
PIM Dense Mode is defined in RFC 3973, “Protocol Independent Multicast – Dense Mode (PIM-DM)”, 
January 2005 (for both IPv4 and IPv6). This uses dense multicast routing, which builds shortest-path 
trees by flooding multicast traffic domain wide, then pruning branches where no receivers are present. 
It does not scale well. 
 
PIM Sparse Mode is defined in RFC 4601, “Protocol Independent Multicast – Sparse Modem (PIM-SM): 
Protocol Specification (Revised)”, August 2006 defines PIM-SM (for both IPv4 and IPv6). As in IPv4, PIM-
SM builds unidirectional shared trees routed at a rendezvous point per group, and can create shortest-
path trees per source. It scales fairly well for wide-area use. 
 
Bidirectional PIM is defined in RFC 5015, “Bidirectional Protocol Independent Multicast (BIDIR-PIM)”, 
October 2007 (for both IPv4 and IPv6). It builds shared bi-directional trees. In never builds a shortest-
path tree, so there may be longer end-to-end delays, but it scales very well.  
 
There is one new standard specific to IPv6 PIM, RFC 3956 “Embedding the Rendezvous Point (RP) 
Address in an IPv6 Multicast Address”, November 2004. This defines an address allocation policy in 
which the address of the Rendezvous Point (RP) is encoded in an IPv6 multicast group address. For PIM-
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SM, this can be seen as a specification of a group-to-RP mapping mechanism. This supports easy 
deployment of scalable inter-domain multicast and simplifies configuration as well. 
 
Example 1: An ISP manages 2001:db8::/32, and wants an RP for the network and all its customers, on an 
existing subnet, for example 2001:db8:beef:feed::/64. The group address would be something like 
ff7x:y40:2001:db8:beef:feed::/96, and the RP address would be 2001:db8:beef:feed::y (y can be any 
value from 1 to F, but not 0). 
 
Example 2: An organization wants to have its own PIM-SM domain. It should pick multicast addresses 
such as ff7x:y30:2001:db8:beef::/80. The RP address would be 2001:db8:beef::y (y can be any value 
from 1 to F, but not 0). 
 
 
5.3.4 – ICMPv6: Internet Control Message Protocol for IPv6 
 
ICMPv6 is a key protocol in the Internet Layer that complements version 6 of the Internet Protocol 
(IPv6). It was originally defined in RFC 1885 (December 1995) and then enhanced in RFC 2463 
(December 1998). It is currently defined in RFC 4443, “Internet Control Message Protocol (ICMPv6) for 
the Internet Protocol Version 6 (IPv6) Specification”, March 2006.  
 
There are many more ICMPv6 messages defined than there are ICMPv4 messages (in fact, Neighbor 
Discovery and Multicast Listener Discovery protocols are just subsets of the ICMPv6 messages). ICMPv6 
messages have a much greater range of functionality than ICMPv4 messages. Even if you block all 
ICMPv4 messages (common practice by some IPv4 network administrators) normal network operation 
will usually occur. This is not true with ICMPv6. ICMPv6 messages are used in normal operation of IPv6. 
 
There are two classes of ICMPv6 messages:  
 

 error messages, with message type ranging from 0 to 127 

 informational messages, with message type ranging from 128 to 255 
 
ICMPv6 Error Messages 
 
 1 Destination Unreachable (ICMPv6, RFC 4443) 
 2 Packet Too Big (ICMPv6, RFC 4443) 
 3 Time Exceeded (ICMPv6, RFC 4443) 
 4 Parameter Problem (ICMPv6, RFC 4443) 
 
ICMPv6 Informational Messages 
 
 128 Echo Request (ICMPv6, RFC 4443) 
 129 Echo Reply (ICMPv6, RFC 4443) 
 130 Multicast Listener Query message (MLDv2, RFC 3810) 
 131 Multicast Listener Report (MLDv1, RFC 2710) 
 132 Multicast Listener Done (MLDv1, RFC 2710) 
 133 Router Solicitation message (ND, RFC 2461) 
 134 Router Advertisement message (ND, RFC 2461) 
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 135 Neighbor Solicitation message (ND, RFC 2461) 
 136 Neighbor Advertisement message (ND, RFC 2461) 
 137 Redirect message (ND, RFC 2461) 
 138 Router Renumbering (RR, RFC 2894) 
 139 ICMP Node Information Query (NIQ, RFC 4620) 
 140 ICMP Node Information Response (NIQ, RFC 4620) 
 141 Inverse Neighbor Discovery Solicitation Message (IND, RFC 3122) 
 142 Inverse Neighbor Discovery Advertisement message (IND, RFC 3122) 
 143 Multicast Listener Report message (MLDv2, RFC 3810) 
 144 Home Agent Address Discovery Request Message (MIPv6, RFC 3775) 
 145 Home Agent Address Discovery Reply Message (MIPv6, RFC 3775) 
 146 Mobile Prefix Solicitation (MIPv6, RFC 3775) 
 147 Mobile Prefix Advertisement (MIPv6, RFC 3775) 
 148 Certification Path Solicitation (SEND, RFC 3971) 
 149 Certification Path Advertisement (SEND, RFC 3971) 
 151 Multicast Router Advertisement (MRD, RFC 4286) 
 152 Multicast Router Solicitation (MRD, RFC 4286) 
 153 Multicast Router Termination (MRD, RFC 4286) 
 154 FMIPv6 messages (MIPv6, RFC 5568) 
 
IND  Inverse Neighbor Discovery 
MIPv6   Mobile IPv6 
MLDv1  Multicast Listener Discovery, version 1 
MLDv2  Multicast Listener Discovery, version 2 
MRD   Multicast Router Discovery 
ND  Neighbor Discovery 
NIQ  Node Information Query 
RR  Router Renumbering 
SEND   SEcure Neighbor Discovery 
 
Note that there is no equivalent ICMPv6 message corresponding to the following ICMPv4 messages (or 
else its function is now contained in another message) 
 
 4 Source Quench 
 5 Redirect 
 13 Timestamp 
 14 Timestamp Reply 
 15 Information Request 
 16 Information Reply 
 
 
Destination Unreachable Error 
 

       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |     Type      |     Code      |          Checksum             | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
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      |                             Unused                            | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                    As much of invoking packet                 | 

      +                as possible without the ICMPv6 packet          + 

      |                exceeding the minimum IPv6 MTU                 | 

 

   IPv6 Fields: 

 

   Destination Address 

 

                  Copied from the Source Address field of the invoking 

                  packet. 

 

   ICMPv6 Fields: 

 

   Type           1 

 

   Code           0 - No route to destination 

                  1 - Communication with destination 

                        administratively prohibited 

                  2 - Beyond scope of source address 

                  3 - Address unreachable 

                  4 - Port unreachable 

                  5 - Source address failed ingress/egress policy 

                  6 - Reject route to destination 

 

   Unused         This field is unused for all code values. 

                  It must be initialized to zero by the originator 

                  and ignored by the receiver. 

 
   Description 

 

   A Destination Unreachable message SHOULD be generated by a router, or 

   by the IPv6 layer in the originating node, in response to a packet 

   that cannot be delivered to its destination address for reasons other 

   than congestion.  (An ICMPv6 message MUST NOT be generated if a 

   packet is dropped due to congestion.) 

 

 
Packet Too Big Message 
 

          0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |     Type      |     Code      |          Checksum             | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                             MTU                               | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                    As much of invoking packet                 | 

      +               as possible without the ICMPv6 packet           + 

      |               exceeding the minimum IPv6 MTU                  | 

 

   IPv6 Fields: 

 

   Destination Address 

 

                  Copied from the Source Address field of the invoking 

                  packet. 

 

   ICMPv6 Fields: 
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   Type           2 

 

   Code           Set to 0 (zero) by the originator and ignored by the 

                  receiver. 

 

   MTU            The Maximum Transmission Unit of the next-hop link. 

 

   Description 

 

   A Packet Too Big MUST be sent by a router in response to a packet 

   that it cannot forward because the packet is larger than the MTU of 

   the outgoing link.  The information in this message is used as part 

   of the Path MTU Discovery process. 

 

 
Time Exceeded Message 
 

       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |     Type      |     Code      |          Checksum             | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                             Unused                            | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                    As much of invoking packet                 | 

      +               as possible without the ICMPv6 packet           + 

      |               exceeding the minimum IPv6 MTU                  | 

 

   IPv6 Fields: 

 

   Destination Address 

                  Copied from the Source Address field of the invoking 

                  packet. 

 

   ICMPv6 Fields: 

 

   Type           3 

 

   Code           0 - Hop limit exceeded in transit 

                  1 - Fragment reassembly time exceeded 

 

   Unused         This field is unused for all code values. 

                  It must be initialized to zero by the originator 

                  and ignored by the receiver. 

 

   Description 

 

   If a router receives a packet with a Hop Limit of zero, or if a 

   router decrements a packet's Hop Limit to zero, it MUST discard the 

   packet and originate an ICMPv6 Time Exceeded message with Code 0 to 

   the source of the packet.  This indicates either a routing loop or 

   too small an initial Hop Limit value. 

 

 
Parameter Problem Message 
  

       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |     Type      |     Code      |          Checksum             | 
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      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                            Pointer                            | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                    As much of invoking packet                 | 

      +               as possible without the ICMPv6 packet           + 

      |               exceeding the minimum IPv6 MTU                  | 

 

   IPv6 Fields: 

 

   Destination Address 

 

                  Copied from the Source Address field of the invoking 

                  packet. 

 

   ICMPv6 Fields: 

 

   Type           4 

 

   Code           0 - Erroneous header field encountered 

                  1 - Unrecognized Next Header type encountered 

                  2 - Unrecognized IPv6 option encountered 

 

   Pointer        Identifies the octet offset within the 

                  invoking packet where the error was detected. 

 

                  The pointer will point beyond the end of the ICMPv6 

                  packet if the field in error is beyond what can fit 

                  in the maximum size of an ICMPv6 error message. 

 

   Description 

 

   If an IPv6 node processing a packet finds a problem with a field in 

   the IPv6 header or extension headers such that it cannot complete 

   processing the packet, it MUST discard the packet and SHOULD 

   originate an ICMPv6 Parameter Problem message to the packet's source, 

   indicating the type and location of the problem. 

 

 

Echo Request Message 
 

       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |     Type      |     Code      |          Checksum             | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |           Identifier          |        Sequence Number        | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |     Data ... 

      +-+-+-+-+- 

 

   IPv6 Fields: 

 

   Destination Address 

 

                  Any legal IPv6 address. 

 

   ICMPv6 Fields: 

 

   Type           128 

 

   Code           0 
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   Identifier     An identifier to aid in matching Echo Replies 

                  to this Echo Request.  May be zero. 

 

   Sequence Number 

 

                  A sequence number to aid in matching Echo Replies 

                  to this Echo Request.  May be zero. 

 

   Data           Zero or more octets of arbitrary data. 

 

   Description 

 

   Every node MUST implement an ICMPv6 Echo responder function that 

   receives Echo Requests and originates corresponding Echo Replies.  A 

   node SHOULD also implement an application-layer interface for 

   originating Echo Requests and receiving Echo Replies, for diagnostic 

   purposes. 

 

 
Echo Reply Message 
 
       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |     Type      |     Code      |          Checksum             | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |           Identifier          |        Sequence Number        | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |     Data ... 

      +-+-+-+-+- 

 

   IPv6 Fields: 

 

   Destination Address 

 

                  Copied from the Source Address field of the invoking 

                  Echo Request packet. 

 

   ICMPv6 Fields: 

 

   Type           129 

 

   Code           0 

 

   Identifier     The identifier from the invoking Echo Request message. 

 

   Sequence Number 

 

                  The sequence number from the invoking Echo Request 

                  message. 

 

   Data           The data from the invoking Echo Request message. 

 

   Description 

 

   Every node MUST implement an ICMPv6 Echo responder function that 

   receives Echo Requests and originates corresponding Echo Replies.  A 

   node SHOULD also implement an application-layer interface for 

   originating Echo Requests and receiving Echo Replies, for diagnostic 

   purposes. 
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   The source address of an Echo Reply sent in response to a unicast 

   Echo Request message MUST be the same as the destination address of 

   that Echo Request message. 

 

   An Echo Reply SHOULD be sent in response to an Echo Request message 

   sent to an IPv6 multicast or anycast address.  In this case, the 

   source address of the reply MUST be a unicast address belonging to 

   the interface on which the Echo Request message was received. 

 

   The data received in the ICMPv6 Echo Request message MUST be returned 

   entirely and unmodified in the ICMPv6 Echo Reply message. 

 

 
5.3.5 – IPv6 Routing 
 
TCP/IPv6 has to solve the same problems as TCP/IPv4 in terms of how to get packets from one point to 
another through a packet switched network. However, the differences in IP address length and 
addressing model mean that the existing routing protocols for TCP/IPv4 do not work. All of the popular 
routing protocols have been extended to support IPv6. These include RIPng, EIGRP, IS-ISv6, OSPF for 
IPv6, and BGP4 with Multiprotocol Extensions (BGP4+). 
 
The following standards are relevant to routing in IPv6: 
 

 RFC 2080, “RIPng for IPv6”, January 1997 (Standards Track) 

 RFC 2185, “Routing Aspects of IPv6 Transition”, September 1997 (Informational) 

 RFC 2545, “Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing”, March 
1999 (Standards Track) 

 RFC 5308, “Routing IPv6 with IS-IS”, October 2008 (Standards Track) 

 RFC 5340, “OSPF for IPv6”, July 2008 (Standards Track) 
 
 
RIPng – RIP Next Generation. Defined in RFC 2080, “RIPng for IPv6”, January 1997. This IETF standard 
specifies extensions to the RIP protocol (as defined in RFCs 1058 and 1723), to support IPv6. Like RIP for 
IPv4, RIPng also uses the Distance Vector algorithm. Unlike RIP for IPv4, RIPng is implemented only in 
routers. IPv6 itself provides mechanisms for router discover (part of ND). RIPng is a UDP based protocol, 
using port 521 (compare with port 520 for RIP). It supports 128 bit IPv6 addresses instead of 32 bit IPv4 
addresses. It has the same limitations as RIP, such as being useful only in small networks, with less than 
15 hops. It does have some of the extensions of RIPv2. When a response is sent to all neighbors, the 
multicast group ff02::9 (all-rip-routers) is used. RIPng only routes IPv6. On a dual stack network, you 
would need both RIP (for IPv4) and RIPng. Since RIPng runs over IPv6, it can use the IPsec Authentication 
Header (AH) and Encapsulating Security Payload (ESP) mechanisms to ensure integrity and 
authentication / confidentiality of routing exchanges. 
 
EIGRP – Enhanced Interior Gateway Routing Protocol (proprietary Cisco routing protocol). This already 
includes extensions to allow it to route IPv4 and/or IPv6 packets. For details, see Cisco documentation. 
 
IS-ISv6 – Extension of IS-IS to support IPv6. Based on two levels, L2 = Backbone, L1 = Stub, L2L1 = 
interconnected L2 and L1. It runs over CNLS. Each IS node still sends out Link State Packets, and sends 
information via Tag/Length/Values. There are two new TLVs: IPv6 Reachability and IPv6 Interface 
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Address, and a new Network Layer Identifier: IPv6 NLPID. Other than that, IS-ISv6 is pretty much the 
same as the original IS-IS. It is still suitable mainly for large ISPs. 
 
OSPF for IPv6 – Open Shortest Path First for IPv6 (also known as OSPFv3). Defined in RFC 5340, “OSPF 
for IPv6”, July 2008. This is still an interior gateway routing protocol, and is suitable for use within 
organizations, but not between autonomous systems (BGP4+ is needed for this). 
 
The basic OSPF for IPv4 mechanisms (flooding, Designated Router election, area support, Short Path 
First calculations) are unchanged. Some changes are required because of new protocol semantics or 
larger address size. Most fields and packet-size limitations in OSPF for IPv4 have been relaxed, and 
option handling is more flexible. The protocol processing is now per-link, instead of per-subnet. There is 
now a flooding scope to reflect the scopes of IPv6 addresses. It uses IPv6 link-local addresses. The 
Addressing Semantics have been removed (with a  few exceptions) leaving a mostly network-protocol-
independent core. OSPF Router IDs, Area IDs and LDA Link State IDs are still 32 bits, so those can no 
longer be IP addresses (which in IPv6 are 128 bits).  
 
The new flooding scope allows control over how widely to flood information: link-local, area wide or AS 
wide (the entire routing domain). It is now possible to run multiple instances of the OSPF protocol on a 
single link (every message now includes an Instance ID value).  Link-local addresses are used where they 
are meaningful (for transactions completely within a link), but global scope IPv6 addresses must still be 
used in some places (e.g. source address for OSPF protocol packets). The AuType and Authentication 
fields have been removed from OSPF for IPv4, as IPsec AH and ESP are available and superior. As with 
TCP, the header checksum covers the entire OSPF packet and a prepended IPv6 pseudo header. All 
support for MOSPF (Multicast OSPF) has been removed.  
 
OSPF for IPv6 runs only over IPv6, and only routes IPv6. On a dual stack network you would need both 
OSPF for IPv4 (OSPFv2) and OSPF for IPv6 (OSPFv3) deployed, similar to RIP and RIPng. It is possible that 
a future version of OSPF will support both IPv4 and IPv6 routing. 
 
BGP4 with Multiprotocol Extensions (also known informally as BGP4+). Defined in RFC 4760, 
“Multiprotocol Extensions for BGP-4”, January 2007. BGP-4 is currently defined in RFC 4271, “A Border 
Gateway Protocol 4 (BGP-4)”, January 2006. BGP-4 supports only IPv4. The multiprotocol extensions 
have been around since RFC 2283, February 1998, but have been updated with each new version of 
BGP-4. 
 
These extensions allow BGP4+ to carry routing information for multiple Network Layer protocols, e.g 
IPv6, IPX, L3VPN, etc). It is designed to be backward compatible, such that a BGP4+ compliant router can 
exchange IPv4 routing information with a router that does not support the multiprotocol extensions 
(basic BGP4).  
 
Currently BGP4+ is the primary protocol used for routing IPv6 packets between Autonomous Systems 
(very large networks under the control of a single entity, such as ISPs or major corporations). Most IPv6 
engineers will never work with it, unless they work for an ISP or a really large company. 
 
One of the issues that ISPs face when supporting IPv6 is to migrate their BGP-4 gateways to BGP4+ 
gateways. They typically must also upgrade many routers to dual stack. At the ISP level, many routers 
have hardware acceleration, so this can be expensive. These may involve “forklift” upgrades, where 
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entirely new high end routers must be purchased, and there may be relatively little resale value for 
legacy IPv4-only equipment (hint to ISPs: migrate to IPv6 now and sell your old gear while is still has 
SOME value!) 
 
 
Looking at Local Routing Information 
 
In Windows, you can view all currently known routes with the “route print” command. If you have 
enabled the IPv6 protocol, and are connected to an IPv6 network, you might see something like the 
following (the “-6” tells it to print only IPv6 route information): 
 
C:\Users\lhughes>route print -6 

=========================================================================== 

Interface List 

 11...00 18 8b 78 da 1a ......Broadcom NetXtreme 57xx Gigabit Controller 

  1...........................Software Loopback Interface 1 

 12...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter 

 13...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface 

=========================================================================== 

 

IPv6 Route Table 

=========================================================================== 

Active Routes: 

 If Metric Network Destination      Gateway 

 11     26 ::/0                     fe80::21b:21ff:fe1e:f4 

  1    306 ::1/128                  On-link 

 13     58 2001::/32                On-link 

 13    306 2001:0:cf2e:3096:30c3:380d:f5fd:fa12/128 

                                    On-link 

 11     18 2001:df8:5403:2410::/64  On-link 

 11    266 2001:df8:5403:2410:3c79:b2ca:90ce:5d59/128 

                                    On-link 

 11    266 2001:df8:5403:2410:a446:d5ef:d313:f5/128 

                                    On-link 

 11    266 fe80::/64                On-link 

 13    306 fe80::/64                On-link 

 13    306 fe80::30c3:380d:f5fd:fa12/128 

                                    On-link 

 11    266 fe80::3c79:b2ca:90ce:5d59/128 

                                    On-link 

  1    306 ff00::/8                 On-link 

 13    306 ff00::/8                 On-link 

 11    266 ff00::/8                 On-link 

=========================================================================== 

Persistent Routes: 

  None    

 

 

5.3.5.1 – Network Address Translation 
 
NAT (Network Address Translation) was introduced to extend the lifetime of the IPv4 address space long 
enough for its replacement, IPv6, to be defined, refined, and compliant infrastructure products and 
applications to be developed. TCP/IPv6 is now fully developed and ready for prime time. NAT has served 
its purpose.  It is time to put it out to pasture. 
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There is a common belief that the practice of hiding nodes behind a single routable IPv4 address (“hide 
mode NAT”) adds security. It really doesn’t.  
 
First, anytime you make an outgoing connection, either directly, or via NAT, the connection you make is 
a two-way path, and the node you connect to can easily attack you right through your packet filtering 
firewall and network address translation. You should have “defense in depth” and protect your node 
with a host-based firewall whether or not you are behind a firewall and NAT gateway. 
 
Second, if a hacker manages to breach your firewall by installing a Trojan horse onto any node in your 
network, they can attack you from that compromised node. Hackers have a term for networks that have 
a strong perimeter defense, but limited internal defenses. It is “hard crunchy outside, soft chewy 
inside”.  Again, host based firewalls on all nodes are a good idea. 
 
Third, if you are using almost any peer-to-peer software, VoIP (e.g. Skype) or IPsec VPN, it probably 
includes a mechanism called NAT Traversal (e.g. STUN, TURN, SOCKS, etc). NAT traversal basically bores 
a hole right through your NAT protection (required for any of the above applications). Anything that 
includes NAT traversal can easily be used to attack you. Many people think Skype is a productivity tool. 
Network security people think it is a network vulnerability. 
 
Fourth, any time you open a document from outside (Word Document, Excel spreadsheet, JPEG image, 
etc) it may contain malware that infects your node right through firewalls and NAT. 
 
It is better to allow direct connections to your node over IPv6, through various layers of firewalls, 
including a host based firewall, together with good active anti-malware software, than to have NAT 
giving you a false sense of security. 
 
On the other hand, NAT causes problems with any connectivity model other than simple client server 
outgoing connections, such as web browser to web server. This was covered in some detail under NAT in 
Chapter 3, section 3.3.5.1. 
 
The real kicker is that NAT is the hacker’s friend! It is easy for a hacker to hide behind a NAT gateway 
and do all kinds of mischief, sending of malware, etc. It is quite difficult for the authorities to figure out 
which of the nodes hidden behind the common address is doing the bad stuff. To do this, the ISP must 
log EVERY connection, including source address, destination address, timestamp and port. This mounts 
up to several TERABYTES for each ISP customer over a year, which is not a trivial amount of storage. 
With a flat address space (as in IPv6), it is far easier to figure out where the attack is coming from. 
 
Because of these issues, there is no IPv6 to IPv6 NAT defined in any IETF standard. There is no need for it 
to extend the IPv6 address space lifetime, it has no other real benefit, it causes many problems, and it is 
greatly impeding innovation. Other than those minor things, I guess it’s OK (sarcasm flag!) 
 
On the other hand, there is a real need for IPv4 to IPv6 (and IPv6 to IPv4) Network Address Translation, 
and there are about 8 proposed methods in the IETF now. All of them have various problems and 
tradeoffs (that is the nature of NAT). One of the more promising schemes is NAT64 in combination with 
DNS64. These will be discussed in more detail in the chapter on migration to TCP/IPv6. 
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5.4 – TCP: The Transmission Control Protocol 
 
There is very little difference in TCP over IPv4 and TCP over IPv6. The main difference is that more 
storage must be provided in the implementations to hold the 4X larger addresses (16 bytes versus 4 
bytes, for each address). The other aspect involves the TCP header checksum, which uses a pseudo 
header to allow inclusion of the IP addresses in the calculation of the checksum (in addition to the 
contents of the payload). Of course there is a different pseudo header format for IPv4 and IPv6, given 
the difference in address size. There are no new RFCs for TCP over IPv6.  
 
There is one new feature for both TCP and UDP over IPv6 called “Jumbograms” . This is defined in RFC 
2675, “IPv6 Jumbograms”, August 1999. Jumbograms are very large packets, with a payload containing 
more than 65,535 bytes. The standard Payload Length field is only 16 bits, so the maximum payload size 
is 65,535 bytes. RFC 2675 defines a new Hop-by-hop option that includes a 32 bit payload length field, 
allowing packet lengths of up to 4.3 billion bytes. Of course, such packets require paths with very large 
MTUs. The simple 16 bit checksum becomes a less reliable error detection scheme as the payload length 
increases significantly. Of course, one bit error would require retransmission of an entire packet, so this 
should be used only on extremely reliable links. 
 
 
5.4.1 – TCP Packet Header 
 
No changes are required to the TCP packet header, as port numbers are still 16 bits in length. The only 
differences are in how the header checksum is calculated (using the IPv6 pseudo header), and the 
availability of Jumbograms. For details on the TCP packet header fields, see section 3.4.1. 
 
 
5.5 – UDP: The User Datagram Protocol 
 
UDP over IPv6 has basically the same differences with UDP over IPv4 as was described for TCP. For 
details on the UDP header fields, see section 3.5. 
 
 
5.6 – DHCPv6 – Dynamic Host Configuration Protocol for TCP/IPv6 
 
Unlike with DNS, it was not possible to add new functionality into DHCPv4 to make a new version for 
IPv6 (let alone a single server that could handle both IPv4 and IPv6). DHCPv6 is pretty much a new 
design from the ground up. DHCPv4 was built from an earlier protocol called BOOTP, and contains many 
now unnecessary features from that. DHCPv6 was cleaned up considerably, and contains none of the 
things leftover from BOOTP.  
 
DHCPv4 runs over IPv4, and supplies only 32-bit IPv4 information (assigned IPv4 addresses, IPv4 
addresses of DNS servers, etc). DHCPv6 runs only over IPv6, and supplies only 128-bit IPv6 information 
(assigned IPv6 addresses, IPv6 addresses of DNS servers, etc). There is no conflict between DHCPv4 and 
DHCPv6 in terms of functionality or ports used, so it is possible to run both on a single, dual-stack node.  
 
Hosts communicate only with DHCPv6 servers or relay agents on their local link, using link-local 
addresses (typically ff02::1:2). DHCPv6 uses ports UDP 546 and 547 (compare with DHCPv4 which uses 



137 

 

UDP ports 67 and 68). As with DHCPv4, relay agents are used to allow hosts to communicate with 
remote DHCPv6 servers (ones not on the local link). This is still done via UDP, but using a site-scope 
address (ff05::1:3) which is used only by relay agents. 
 
In some simple networks, there is no need for DHCPv6 because of Stateless Address Autoconfiguration.  
Currently, however, DHCPv6 is the only way for IPv6 capable nodes to automatically learn the IPv6 
addresses of DNS servers. This is particularly important for IPv6-only (“pure IPv6”) networks, of which 
there are not many yet. For dual stack networks, there is no conflict between DHCPv4 and DHCPv6, and 
both can exist even on a single node. In this case, the IPv4 side of a node would get its IPv4 configuration 
from the DHCPv4 server, and the IPv6 side of a node would get its IPv6 configuration from the DHCPv6 
server. 
 
DHCPv6 allows the administrator far better control over distribution of interface identifiers (low 64 bits 
of each address) than with Stateless Address Autoconfiguration. With SAA, interface identifiers can 
either make use of only a tiny percentage of the possible 264 address space (when using EUI-64 
generated interface identifiers), or have interface identifiers scattered randomly all over the possible 264 
address space (when using cryptographically generated addresses). Either of these can lead to problems 
with Network Access Control or Firewall rules. In general, administrators like to cluster IP addresses by 
department (or other groupings), so that a single firewall or NAC rule can be used for an entire group, by 
specifying an address range (e.g. all addresses that fall between 2001:df8:5403:3000::1000 and 
2001:df8:5403:3000::1fff, inclusive).  
 
IPv6 capable nodes can be informed that there is a DHCPv6 server available via two bits in the Router 
Advertisement message. The Router Advertisement message and the relevant bits are described in RFC 
4861, “Neighbor Discovery for IP version 6 (IPv6)”, September 2007. In the Router Advertisement 
message there are two bits, M and O (first and second bits of the sixth byte of the Router Advertisement 
message), with the following semantics: 
 
M – “Managed address configuration” flag. When set it indicates that addresses are available via 
DHCPv6. If set, then the O flag can be ignored. This enables stateful DHCPv6, where both the stateless 
information (IPv6 addresses of DNS and other servers) and global unicast addresses can be obtained 
from DHCPv6. 
 
O – “Other configuration” flag. When set, it indicates that other configuration information is available 
via DHCPv6. This includes things such as IPv6 addresses of DNS or other servers. This is called stateless 
DHCPv6, and is used in conjunction with Stateless Address Autoconfiguration (for obtaining global 
unicast addresses).  
 
If both M and O bits are clear, then SAA is the only way to get addresses, and there is no source of IPv6 
addresses for any servers, including DNS. 
 
RFCs for DHCPv6 
 
There are a number of RFCs that define DHCPv6. The most important ones are: 
 

 RFC 3315, “Dynamic Host Configuration Protocol for IPv6 (DHCPv6)”, July 2003 (Standards 
Track) 
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 RFC 3319, “Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation 
Protocol (SIP) Servers”, July 2003 

 RFC 3633, “IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6”, 
December 2003 (Standards Track) 

 RFC 3646, “DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 
(DHCPv6)”, December 2003 (Standards Track) 

 RFC 3736, “Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6”, April 2004 
(Standards Track) 

 RFC 3898, “Network Information Service (NIS) Configuration Options for Dynamic Host 
Configuration Protocol for IPv6 (DHCPv6)”, October 2004 (Standards Track) 

 RFC 4076, “Renumbering Requirements for Stateless Dynamic Host Configuration Protocol for 
IPv6 (DHCPv6)”, May 2005 (Informational) 

 RFC 4242, “Information Refresh Time Option for Dynamic Host Configuration Protocol for IPv6 
(DHCPv6)”, November 2005 (Standards Track) 

 RFC 4477, “Dynamic Host Configuration Protocol (DHCP): IPv4 and IPv6 Dual-Stack Issues”, 
May 2006 (Informational) 

 RFC 4580, “Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Subscriber-ID 
Option”, June 2006 (Standards Track) 

 RFC 4649, “Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Remote-ID 
Option”, August 2006 (Standards Track) 

 RFC 4704, “The Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Client Fully Qualified 
Domain Name (FQDN) Option”, October 2006 (Standards Track) 

 RFC 5007, “DHCPv6 Leasequery”, September 2007 (Standards Track) 

 RFC 5460, “DHCPv6 Bulk Leasequery”, February 2009 (Standards Track) 
 

 
DHCPv6 has a failover mechanism. Two servers can manage a single pool of addresses for redundancy 
(in case of failure of one of the servers). This also can be used for load balancing. 
 
All IPv6 hosts have automatically generated link-local addresses that can be used to exchange packets 
with any other node on the local link. DHCPv4 requires some complex hacks to allow hosts to 
communicate before they get an address. All IPv6 hosts support link-local multicast. All DHCPv6 servers 
listen to DHCPv6 multicast groups. With DHCPv4, clients have to do a general broadcast to all nodes on 
the link, which generates significant broadcast traffic on the link and unnecessary traffic handling on all 
nodes. 
 
With DHCPv6, a single request can configure all interfaces on a node. The server can offer multiple 
addresses, one for each interface, and each interface can even have different options. With DHCPv4, 
each interface would require a separate DHCP operation. 
 
Some of the stateless information (that is, other than assigned IPv6 addresses for each node), include: 
 

 IPv6 prefix 

 Vendor specific options 

 Addresses of SIP servers 

 Addresses of DNS servers and search options 
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 NIS configuration 

 SNTP servers 

 BCMS servers 
 
There are several implementations of DHCPv6 already on the market. Windows Server 2008 contains a 
very complete implementation, in addition to its DHCPv4 server. You can view the IPv6 Ready Phase 2 
product list for other options, including my own company’s SolidDNS appliance. Some implementations 
only support stateless mode, which means they can supply stateless information (like DNS addresses) 
but not actually allocate addresses. Be sure the DHCPv6 server you select includes full support for 
stateful mode as well (where it can supply addresses to each node, in addition to stateless information). 
You should also be sure that the gateway router or firewall you select has the ability to inform nodes 
that DHCPv6 servers are available on the subnet. 
 
Address Reservations with DHCPv6 
 
In the case of DHCPv4, it is possible to make an address reservation, linked to the MAC address of a 
node. Anytime the node with a MAC address for which an address reservation has been made asks 
DHCPv4 for an address, it will get the specific address that was reserved for that MAC address. In the 
case of DHCPv6, the same concept applies, except that you use two identifiers called the IAID (Interface 
Association ID) and DUID (DHCP Unique IDentifier). 
 
A DUID consists of a two-bye type code represented in network byte order, followed by a variable 
number of bytes that make up the actual identifier. A DUID can be no more than 128 bytes long (not 
including the type code). The following types are currently defined: 
 
 
Link-layer address plus time (DUID-LLT) – recommended for all general purpose computing devices, 
such as desktop computers, printers, routers, etc. The must contain some form of writable non-volatile 
storage. Note that the device should configure the time on the node before this DUID is generated, if 
possible. The only purpose of the timestamp is to lower the chance of an identifier conflict. The link-
layer address is typically the MAC address for Ethernet media. The DUID is defined as follows: 
  
     0                   1                   2                   3 

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

    |               1               |    hardware type (16 bits)    | 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

    |                        time (32 bits)                         | 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

    .                                                               . 

    .             link-layer address (variable length)              . 

    .                                                               . 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

 
Vendor-Assigned Based on Enterprise Number (DUID-EN) – This form is assigned to the device by the 
vendor. This type of DUID is for have some form of non-volatile storage (e.g. EEPROM). The enterprise 
number is the IANA 32-bit assigned number for the vendor. The identifier can be anything the vendor 
chooses, but must be unique within that vendor for each device. 
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     0                   1                   2                   3 

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

    |               2               |       enterprise-number       | 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

    |   enterprise-number (contd)   |                               | 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               | 

    .                           identifier                          . 

    .                       (variable length)                       . 

    .                                                               . 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

 
Link-Layer Address (DUID-LL) – This form is just like the DUID-LLT, without the timestamp. It is 
recommended for permanently connected devices that have a link-layer address, but no nonvolatile, 
writeable stable storage. 
 
     0                   1                   2                   3 

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

    |               3               |    hardware type (16 bits)    | 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

    .                                                               . 

    .             link-layer address (variable length)              . 

    .                                                               . 

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

 
 
Viewing your Node’s DUID 
 
In Windows 7, using a command prompt, type the command ipconfig /all. In the section related to the 
interface you are interested in, look for the field DHCPv6 Client DUID. Note that this is a DUID-LLT (Type 
code 00-01). The next six hex digit pairs (00-01-12-D6-97-E5) are the timestamp. The last six hex digit 
pairs (00-18-8B-78-DA-1A) are the same as the Physical Address (MAC address).  
 
Ethernet adapter Local Area Connection: 

 

   Connection-specific DNS Suffix  . : infoweapons.com 

   Description . . . . . . . . . . . : Broadcom NetXtreme 57xx Gigabit Controller 

   Physical Address. . . . . . . . . : 00-18-8B-78-DA-1A 

   DHCP Enabled. . . . . . . . . . . : Yes 

   Autoconfiguration Enabled . . . . : Yes 

   IPv6 Address. . . . . . . . . . . : 2001:df8:5403:2410:3c79:b2ca:90ce:5d59(Pr 

eferred) 

   Temporary IPv6 Address. . . . . . : 2001:df8:5403:2410:882:cf5c:e810:363d(Pre 

ferred) 

   Link-local IPv6 Address . . . . . : fe80::3c79:b2ca:90ce:5d59%11(Preferred) 

   IPv4 Address. . . . . . . . . . . : 10.2.5.237(Preferred) 

   Subnet Mask . . . . . . . . . . . : 255.240.0.0 

   Lease Obtained. . . . . . . . . . : Friday, March 12, 2010 10:52:52 AM 

   Lease Expires . . . . . . . . . . : Friday, March 12, 2010 4:11:44 PM 

   Default Gateway . . . . . . . . . : fe80::21b:21ff:fe1e:f4%11 

                                       10.0.0.10 

   DHCP Server . . . . . . . . . . . : 10.1.0.14 

   DHCPv6 IAID . . . . . . . . . . . : 234887307 
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   DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-12-D6-97-E5-00-18-8B-78-DA-1A 

 

   DNS Servers . . . . . . . . . . . : 2001:df8:5403:2400::14 

                                       2001:df8:5403:2400::13 

                                       10.1.0.14 

                                       10.1.0.13 

   NetBIOS over Tcpip. . . . . . . . : Enabled 

   Connection-specific DNS Suffix Search List : 

                                       cebu.infoweapons.com 

 

You can also see a DHCPv6 IAID value (in this case 234887307). This identifies a particular Identity 
Association which allows a server and a client to identify, group, and manage a set of related IPv6 
addresses. Each IA consists of an IAID, one or more IPv6 addresses, and the time T1 and T2 for that IA. 
Each IA is associated with exactly one interface. For further details, see RFC 3315, section 11. 
 
DHCPv6 Ports and Messages 
 
Clients and servers exchange DHCPv6 messages using UDP over IPv6. The client uses a link-local address, 
or addresses obtained via other mechanisms as the source address for transmitted and receiving 
DHCPv6 messages. Servers receive messages from clients using a reserved link-scoped multicast 
address, so that clients don’t need to be configured with the addresses of DHCPv6 servers. To allow 
hosts to communicate with servers on other links, DHCPv6 relay agents are used. Clients listen for 
DHCPv6 messages on UDP port 546. Servers and relay agents listen for DHCPv6 messages on UDP port 
547. 
 
The link-scoped multicast address used by a client to communicate with an on-link relay agent or server 
is ff02::1:2. All DHCPv6 servers and relay agents are members of this multicast group.  
 
The site-scoped multicast address used by a relay agent to communicate with servers is ff05::1:3, if it 
wants to send a message to all DHCPv6 servers, or does not know the unicast address of the servers. All 
DHCPv6 servers in given site are members of this multicast group. 
 
There are a number of DHCPv6 messages: 
 
The SOLICIT message (1), is sent (multicast) by a client to locate servers. 
 
The ADVERTISE message (2), is sent (multicast) by a server to indicate that it is available to provide 
DHCPv6 service, in response to a Solicit message from a client. 
 
The REQUEST message (3) is sent (unicast) by a client to request configuration parameters, including IP 
addresses, from a specific server. 
 
The CONFIRM message (4) is sent (multicast) by a client to any available server to determine whether 
the addresses it was assigned are still appropriate on the link to which the client is connected. 
 
The RENEW message (5) is sent (unicast) by a client to the server that originally provided the client’s 
address and configuration parameters, to extend the lifetime on the addresses assigned to the client 
and update other configuration parameters. 
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The REBIND message (6) is sent (multicast) by a client to any available server to extend the lifetimes on 
the addresses assigned to the client and to update other configuration parameters. This message is sent 
after a client receives no response to a RENEW message. 
 
The REPLY message (7) is sent (unicast) by a server to a client in response to a SOLICIT, REQUEST, 
RENEW or REBIND message received from a client. A server sends a REPLY message containing 
configuration parameters in response to an INFORMATION-REQUEST message. It sends a REPLY message 
in response to a CONFIRM message confirming or denying that the addresses assigned to the client are 
appropriate on the link to which the client is connected. A server sends a REPLY message to 
acknowledge receipt or a RELEASE or DECLINE message. 
 
The RELEASE message (8) is sent (unicast) by a client to the server that assigned addresses to the client 
to indicate that the client will no longer use one or more of the assigned addresses. 
 
The DECLINE message (9) is sent (unicast) to a server to indicate that the client has determined that one 
or more addresses assigned by the server are already in use on the link to which the client is connected. 
 
The RECONFIGURE message (10) is sent (unicast) by a server to a client to inform the client that the 
server has new or updated configuration parameters, and that the client should initiate a RENEW/REPLY 
or INFORMATION-REQUEST/REPLY transaction with the server in order to obtain the updated 
information. 
 
The INFORMATION-REQUEST message (11) is sent (unicast) by a client to a server to request 
configuration parameters, without the assignment of any IP addresses to the client. 
 
The RELAY-FORW message (12) is sent (multicast) by a relay agent to forward messages to servers, 
either directly or through another relay agent. The received message, either a client message or a 
RELAY-FORW message from another relay agent, is encapsulated in an option in the RELAY-FORW 
message. 
 
The RELAY-REPL message (13) is sent (unicast) by the server to a relay agent containing a message that 
the relay agent should then deliver to a client. The RELAY-REPL message may be relayed by other relay 
agents for delivery to the destination relay agent. The server encapsulates the client message as an 
option in the RELAY-REPL message, which the relay agent extracts and then relays to the next relay 
agent or directly to the client. 
 
DHCPv6 Status Codes 
 
The following codes are used to communicate the success or failure of operations requested in 
messages from clients and servers, and additional information about the specific cause in the event of a 
failure to perform the operation.  
 
   Name         Code Description 

   ----------   ---- ----------- 

   Success         0 Success. 

   UnspecFail      1 Failure, reason unspecified; this 

                     status code is sent by either a client 



143 

 

                     or a server to indicate a failure 

                     not explicitly specified in this 

                     document. 

   NoAddrsAvail    2 Server has no addresses available to assign to 

                     the IA(s). 

   NoBinding       3 Client record (binding) unavailable. 

   NotOnLink       4 The prefix for the address is not appropriate for 

                     the link to which the client is attached. 

   UseMulticast    5 Sent by a server to a client to force the 

                     client to send messages to the server. 

                     using the All_DHCP_Relay_Agents_and_Servers 

                     address. 

 

DHCPv6 Message Syntax 
 
All messages sent between clients and servers share the following syntax: 
 
       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |    msg-type   |               transaction-id                  | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                                                               | 

      .                            options                            . 

      .                           (variable)                          . 

      |                                                               | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

      msg-type             Identifies the DHCP message type 

 

      transaction-id       The transaction ID for this message exchange. 

 

      options              Options carried in this message. 

 

 
5.6.1 – The DHCPv6 Protocol 
 
DHCPv6 works in somewhat the same was as DHCPv4, except that different messages are used, and 
communication between client and server take place over using link-local scoped multicast and unicast 
addresses. 
 
When it first comes up, before any DHCPv6 operation, an IPv6 capable client node obtains a link-local 
unicast address through ND (and possibly a global unicast address as well, using information from a 
Router Advertisement message). If a Router Advertisement message is seen, then the client can check 
the M & O bits in it to determine if there is Stateful DHCPv6, Stateless DHCPv6, or no DHCPv6 available. 
If no Router Advertisement is available, a client can still attempt DHCPv6 server discovery, as follows. 
 
The client sends a SOLICIT message to multicast group ff02::1:2. This address specifies all DHCPv6 
servers or relay agents on the local-link. The included options are:  
 
 ClientID 
 Option Request Option (IA-NA, DNS-Servers, Domain-List) 
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One or more DHCPv6 servers on the link (or servers on remote links, via DHCPv6 relay agents) will reply 
with an ADVERTISE message to the client that sent the SOLICIT message (via unicast). The included 
options are:  
 
 ServerID, ClientID 
 DNS-Servers, IA-NA (IAID, IAPREFIX). 
 
The client will select one responding DHCPv6 server and send a REQUEST message to it (via unicast). This 
will actually ask for an address lease. The included options are:  
 
 ServerID, ClientID 
 Option Request Option (IA-NA, DNS-Servers, Domain-List) 
 
The selected server will send a REPLY message to the client that sent the REQUEST message (via 
unicast). This will confirm the address lease. The included options are:  
 
 ServerID, ClientID 
 DNS-Servers: 2001:xxx:yyy:zzz::a, 2001:xxx:yyy:zzz::b 
 IA-NA: IAID: 1, 
  IAPREFIX: Preferred lifetime: nnnnnn, 
      Valid lifetime: nnnnnn, 
      Prefix: 2001:xxx:yyy:zzz::c/64 
 
At some later point in time, when the lease is about to expire, the client will send a RENEW message to 
the selected DHCPv6 server. The server will extend the lease and respond with a REPLY message. 
 
For Further Information on DHCPv6 
 
For details on how clients send and respond to DHCPv6 messages see RFC 3315, section 17. 
 
For details on DHCP Client-initiated Configuration Exchanges see RFC 3315, section 18. 
 
For details on DHCP Server-initiated Configuration Exchanges see RFC 3315, section 19. 
 
For details on Relay Agent behavior see RFC 3315, section 20. 
 
For details on the optional authentication mechanism, for use of DHCPv6 in unsecured environments, 
such as wireless networks see section RFC 3315, section 21. 
 
For available DHCPv6 message options and their syntax see RFC 3315, section 22. 
 
Stateless DHCPv6 assumes that assigned IPv6 addresses are obtained some other way, such as Stateless 
Address Autoconfiguration, and that only stateless information (IPv6 addresses of DNS servers, SIP 
servers, etc) will be obtained from DHCPv6. RFC 3736, “Stateless Dynamic Host Configuration Protocol 
(DHCP) Server for IPv6”, April 2004, defines the subset of messages and options from the full (stateful) 
DHCPv6 functionality that are required to provide stateless DHCPv6 service. 
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For details on publishing the address of SIP servers with DHCPv6, see RFC 3633, “IPv6 Prefix Options for 
Dynamic Host Configuration Protocol (DHCP) version 6”, December 2003. 
 
For details on publishing the address of DNS servers with DHCPv6, see RFC 3646, “DNS Configuration 
options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)”, December 2003. 
 
For details on publishing the address of NIS (Network Information Service) servers with DHCPv6, see RFC 
3898, “Network Information Service (NIS) Configuration Options for Dynamic Host Configuration 
Protocol for IPv6 (DHCPv6)”, October 2004. 
 
For details on publishing the address of SNTP (Simple Network Time Protocol) servers with DHCPv6, see 
RFC 4075, Simple Network Time Protocol (SNTP) Configuration Option for DHCPv6”, May 2005. 
 
 
5.6.2 – Useful Commands Related to DHCPv6 
 
In Windows 7, there are some commands available in a command prompt box related to DHCPv6: 
 
 ipconfig /release6  release assigned IPv6 address (es), deconfigure network 
 ipconfig /renew 6  do a new configuration request for IPv6 
 ipconfig /all   view all network configuration settings (IPv4 and IPv6) 
 
This is an example of the output from “ipconfig /all”: 
 
... 

Ethernet adapter Local Area Connection: 

 

   Connection-specific DNS Suffix  . : hughesnet.local 

   Description . . . . . . . . . . . : Realtek PCIe GBE Family Controller 

   Physical Address. . . . . . . . . : 00-22-15-24-32-9C 

   DHCP Enabled. . . . . . . . . . . : Yes 

   Autoconfiguration Enabled . . . . : Yes 

   IPv6 Address. . . . . . . . . . . : 2001:df8:5403:3000::2:1(Preferred) 

   Lease Obtained. . . . . . . . . . : Friday, March 12, 2010 9:43:06 PM 

   Lease Expires . . . . . . . . . . : Wednesday, March 24, 2010 9:43:09 PM 

   IPv6 Address. . . . . . . . . . . : 

     2001:df8:5403:3000:b5ea:976d:679f:30f5(Preferred) 

   Temporary IPv6 Address. . . . . . : 

     2001:df8:5403:3000:218a:4956:7d8c:7c2c(Preferred) 

   Link-local IPv6 Address . . . . . : fe80::b5ea:976d:679f:30f5%11(Preferred) 

   IPv4 Address. . . . . . . . . . . : 172.20.2.1(Preferred) 

   Subnet Mask . . . . . . . . . . . : 255.255.0.0 

   Lease Obtained. . . . . . . . . . : Friday, March 12, 2010 9:42:57 PM 

   Lease Expires . . . . . . . . . . : Thursday, March 18, 2010 9:43:00 PM 

   Default Gateway . . . . . . . . . : fe80::21b:21ff:fe1d:c159%11 

                                       172.20.0.1 

   DHCP Server . . . . . . . . . . . : 172.20.0.11 

   DHCPv6 IAID . . . . . . . . . . . : 218112533 

   DHCPv6 Client DUID. . . . . . . . : 00-01-00-01-11-99-BD-28-00-22-15-24-32-9C 

   DNS Servers . . . . . . . . . . . : 2001:df8:5403:3000::c 

                                       2001:df8:5403:3000::b 

                                       172.20.0.11 

                                       172.20.0.12 

   NetBIOS over Tcpip. . . . . . . . : Enabled 
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   Connection-specific DNS Suffix Search List : hughesnet.local 

... 

 

In the above, notice the following: 
 

 The MAC address (“Physical Address”) of the interface is 00-22-15-23-32-9C 

 A 64-bit interface identifier (b5ea:976d:679f:30f5) was created, which is a cryptographically 
generated value (not from EUI-64). A link-local unicast address was generated from this (by 
prepending fe80::/64). The link-local address of the default gateway  (fe80::21b:21ff:fe1d:c159) 
was then obtained using ND Router Discovery. 

 A Router Advertisement message supplied the subnet prefix (2001:df8:5403:3000::/64), so the 
node used it to create two global unicast addresses, one of which 
(2001:df8:5403:3000:b5ea:976d:679f:30f5) used the  64-bit random interface identifier from 
ND, the other (2001:df8:5403:3000:218a:4956:7d8c:7c2c) used yet another random interface 
identifier. 

 Obtain an IP address automatically, and Obtain DNS server address automatically were selected 
in the IPv4 GUI configuration (“DHCP Enabled”), and a working DHCPv4 server was found 
(“Autoconfiguration Enabled”). So, an IPv4 address (172.20.2.1), the subnet mask (255.255.0.0), 
the default gateway (172.20.0.1) and the IPv4 addresses of two DNS servers were obtained from 
the DHCPv4 server. The lease for this was obtained on 3/12/2010, 9:42pm, and will expire on 
3/18/2010, at 9:43pm. The MAC address (00-22-15-23-32-9C) was used to make a DHCPv4 
reservation for this node, so this node will always get that IPv4 address. 

 Obtain an IPv6 address automatically, and Obtain DNS server address automatically were 
selected in the IPv6 GUI configuration, and both the M and O bits were set in the Router 
Advertisement message (Stateful and Stateless DHCPv6 available), so another global unicast 
IPv6 address (2001:df8:5403:3000::2:1) was obtained from DHCPv6, plus the IPv6 addresses of 
two DNS servers. The lease for this was obtained on 3/12/2010, at 9:43pm and will expire on 
3/24/2010 at 9:43pm. 

 The DUID of the node is 00-01-00-01-11-99-BD-28-00-22-15-24-32-9C. The first two hex digit 
pairs contain 00-01. That means this is a type 1 DUID (DUID-LLT), “Link-Layer plus Timestamp”. 
The next six hex digit pairs (00-01-11-99-BD-28) are the timestamp, and the last six digit pairs 
(00-22-15-23-32-9C) contain the interface MAC address. This DUID, along with the IAID 
(218112533) was used to make a DHCPv6 address reservation for this node. So, this node will 
always get that IPv6 address. 

 
 
5.7 – TCP/IPv6 Network Configuration 
 
Let’s assume our LAN has the following configuration: 
 
 Network Prefix:   2001:df8:5403:3000::/64 
 Default Gateway:  2001:df8:5403:3000::1 
 DHCPv6 Server Address: 2001:df8:5403:3000::11   
 DNS Server Addresses:  2001:df8:5403:3000::11, 2001:df8:5403:3000::12 
 Domain Name:   redwar.org 
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Furthermore, assume the DHCPv6 server is correctly configured with this information, and is managing 
the address range 2001:df8:5403:3100::1000 to 2001:df8:5403:3100::1fff (and that some leases have 
already been granted). 
 
Any node connected to a network with TCP/IPv6 (that will access IPv6 nodes on the Internet) must have 
certain items configured, including: 
 

 IPv6 link-local node address (obtained automatically) 

 All nodes on local-link multicast address (ff01::1), there by default 

 IPv6 global unicast address 

 IPv6 address of default gateway (link-local address of gateway obtained automatically) 

 IPv6 addresses of DNS servers (manually configured or from DHCPv6) 

 Nodename 

 DNS domain name 
 
 
5.7.1 – Manual Network Configuration for IPv6-Only 
 
It is possible perform TCP/IPv6 configuration manually, either by editing ASCII configuration files, as in 
FreeBSD or Linux; or via GUI configuration tools, as in Windows. If you have understood the material in 
this chapter, it should be fairly easy to configure your node(s). In most cases, if you have ISP service, the 
ISP will give you all the information necessary to configure your node(s). In the coverage of Dual Stack 
networks we will show configuration of both IPv4 and IPv6 on a single node. 
 
Auto Network Configuration Using Stateless Address Autoconfiguration 
 
It is easy for a FreeBSD node to be automatically configured using Stateless Address Autoconfiguration. 
Note that the global unicast address will be created with the EUI-64 algorithm from your MAC address. 
 
Let’s configure a FreeBSD 7.2 node automatically with SAA. Assign it the following configuration: 
 
 FreeBSD interface name  vr0 
 nodename   us1.redwar.org 
 node IP address   (whatever SAA comes up with) 
 default gateway  (whatever SAA comes up with) 
 DNS domain name  redwar.org 
 DNS Server 1   2001:df8:5403:3000::11 
 DNS Server 2   2001:df8:5403:3000::12 
 
 
You need to edit the following files (you will need root privilege to do this): 
 
/etc/rc.conf 
 
 ... 

 hostname=”us1.redwar.org” 

 ipv6_enable=”YES” 
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 ... 

 
/etc/resolv.conf 
 
 domain redwar.org 

 nameserver 2001:df8:5403:3000::11 

 nameserver 2001:df8:5403:3000::12 

 
If you make these changes, then reboot, you can check the configuration as shown: 
 
$ ifconfig vr0 

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC> 

        ether 00:15:f2:2e:b4:1c 

        inet6 2001:df8:5403:3000::215:f2ff:fe2e:b41c prefixlen 64 

        inet6 fe80::215:f2ff:fe2e:b41c%vr0 prefixlen 64 scopeid 0x1 

        media: Ethernet autoselect (100baseTX <full-duplex>) 

        status: active 

$ uname –n 

us1.redwar.org 

$ nslookup 

> server 

 

> exit 

 

$ netstat –finet6 -rn 

 
Auto Network Configuration Using Manually Specified (Static) IPv6 Address 
 
Let’s configure a FreeBSD 7.2 node manually with a static node address. Assign it the following 
configuration: 
 
 FreeBSD interface name  vr0 
 nodename   us1.redwar.org 
 node IP address   2001:df8:5403:3000::13 
 default gateway  2001:df8:5403::1 
 DNS domain name  redwar.org 
 DNS Server 1   2001:df8:5403:3000::11 
 DNS Server 2   2001:df8:5403:3000::12 
 
You need to edit the following files (you will need root privilege to do this): 
 
/etc/rc.conf 
 
 ... 

 hostname=”us1.redwar.org” 

 ipv6_enable=”YES” 

 ipv6_ifconfig_vr0=”2001:df8:5403:3000::13 prefixlen 64” 

 ipv6_defaultrouter=”2001:df8:5403:3000::1” 

 ... 

 



149 

 

/etc/resolv.conf 
 
 domain redwar.org 

 nameserver 2001:df8:5403:3000::11 

 nameserver 2001:df8:5403:3000::12 

 
If you make these changes, then reboot, you can check the configuration as shown: 
 
$ ifconfig vr0 

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC> 

        ether 00:15:f2:2e:b4:1c 

        inet6 2001:df8:5403:3000::13 prefixlen 64 

        inet6 fe80::215:f2ff:fe2e:b41c%vr0 prefixlen 64 scopeid 0x1 

        media: Ethernet autoselect (100baseTX <full-duplex>) 

        status: active 

$ uname –n 

us1.hughesnet.local 

$ nslookup 

> server 

 

> exit 

 

$ netstat –finet6 -rn 

 

 
Note:  if you specify a static IPv6 Address in FreeBSD 7.x (“ipv6-config_vr0=”…”), the node will not obtain 
a link-local default gateway address automatically. Therefore in this case it is essential that you also 
manually specify a default gateway address (which can be global unicast or link-local), using the 
“ipv6_defaultrouter=…” option in /etc/rc.conf. If no default gateway is defined, communication with 
other on-link nodes will work OK, but communication with off-link nodes will fail. 
 
This is different from the behavior of Windows 7 and Linux, where the addition of a manually configured 
global unicast address does not stop the node from obtaining the link-local default gateway 
automatically. 
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Chapter 6 – IPsec and Mobile IP  
 
This chapter covers two advanced protocols for TCP/IP, Mobile IP and IPsec. Both of these protocols are 
available for IPv4 and for IPv6 based networks, but in both cases, there are significant issues with NAT in 
existing IPv4 networks that severely complicate implementation and deployment. Of course, these 
issues are not a problem in IPv6 based networks.  There are other aspects of IPv6 (support for multicast 
and link-local addresses) that make both protocols work better on IPv6 than on IPv4. Both of these 
protocols are quite powerful and add strong incentives for organizations to begin supporting IPv6 
sooner rather than later. 
 
 
6.1 – Internet Protocol Layer Security (IPsec) 
 
The official name for this technology (as used by the IETF) is The Security Architecture for the Internet 
Protocol. Since it takes place in the Internet Layer, protocols at the Transport and Application Layers 
need not even be aware of it, and do not need to be modified to use it. In effect, you build secure 
tunnels at the IP layer that the higher layer protocols go through unmodified. Compare with SSL/TLS 
where the application layer is heavily impacted, both in the design and implementation stage (many 
changes to source code and application design), and in deployment stage (obtaining and installing server 
digital certificates into the server application). You could say that applications get a “free ride” over 
IPsec, gaining security features (without having to include any support for security themselves) simply by 
running over Internet Layer links secured with IPsec. 
 
By security we are here referring to three specific aspects of security: 
 

 privacy (keeping others from being able to view the content of your transmissions), 
accomplished using the Encapsulating Security Payload (ESP) feature 

 authentication (knowing for sure who the packets came from), accomplished with the 
Authentication Header (AH) feature 

 message integrity (knowing if someone has made any changes to the data field or certain of the 
header fields, including the source and destination addresses), also accomplished with the 
Authentication Header (AH) feature 

 
The AH and ESP features are mutually independent. You can make use of neither, either or both, 
depending on your requirements. If you need only authentication and message integrity, you can use 
only AH. If you need only privacy, you can use only ESP. If you require both, you can use both AH and 
ESP (there is no conflict between them).  
 
Note however, that since AH protects the source and destination addresses in the IP header and the 
source and destination ports in the TCP or UDP header, any changes at all to these fields will be 
detected as tampering (to AH there is no way to distinguish malicious tampering from changes your own 
network makes to these fields). This means AH will report the changes to IP addresses and ports in the 
header by NAT to be an attack. It is possible to combine NAT traversal with IPsec (as discussed in RFC 
3715, “IPsec-Network Address Translation (NAT) Compatibility Requirements”), but this greatly 
complicates the creation and deployment of IPsec applications, and introduces new security issues 
which may outweigh the benefits of using IPsec in the first place. IPsec is not very suitable for use on 
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existing IPv4 networks since NAT is so widely deployed. Many network professionals have gotten a bad 
impression of it, but this is because of NAT in IPv4 networks, not any shortcoming of IPsec. There is no 
other technology for building VPNs supported by the IETF. IPsec works great in IPv6 networks. This is 
because of better support in IPv6 headers to some extent, but primarily because there is no NAT. 
 
Any security features at this level (which must be performed once per packet) must be very lightweight 
(they cannot use mechanisms that require a lot of CPU power). This rules out the use of asymmetric key 
cryptography (as used in digital signatures and digital envelopes), at least on a per packet basis. Use of 
asymmetric key cryptography would cause severe degradation of network throughput. Fortunately, 
there is a lightweight alternative to digital signatures, which is Hash-based Message Authentication 
Codes (essentially a key driven message digest), which is used in AH. Encryption is handled using only 
symmetric key encryption and decryption with the same symmetric key for many packets. The key can 
be manually distributed (shared secret deployment) or securely distributed via the Internet Key 
Exchange (IKE) protocol, which does use asymmetric key cryptography (but IKE is used infrequently – the 
exchanged key is used to encrypt or decrypt a large number of packets before another key is 
exchanged). Even with these lightweight algorithms, there can still be an impact on network throughput 
(especially on systems with lower performance CPUs). Network Interface Cards (NICs) are available that 
include hardware acceleration of the IPsec algorithms (HMAC generation and checking, as well as 
symmetric key encryption/decryption). These allow wire speed network throughput even on systems 
with low performance CPUs. 
 
6.1.1 – Relevant Standards for IPsec 
 
The following standards are relevant to IPsec and IKE (also see Appendix A on Cryptography and PKI): 
 

 RFC 2407, “The Internet IP Security Domain of Interpretation for ISAKMP”, November 1998 
(Standards Track, Obsoleted by RFC 4306) 

 RFC 2408, “Internet Security Association and Key Management Protocol (ISAKMP)”, November 
1998 (Standards Track, Obsoleted by RFC 4306) 

 RFC 2409, “The Internet Key Exchange (IKE)”, November 1998 (Standards Track, Obsoleted by 
RFC 4306) 

 RFC 2410, “The NULL Encryption Algorithm and Its Use With IPsec”, November 1998 (Standards 
Track) 

 RFC 2411, “IP Security Document Roadmap”, November 1998 (Informational) 

 RFC 2412, “The Oakley Key Determination Protocol”, November 1998 (Informational) 

 RFC 2709, “Security Model with Tunnel-mode IPsec for NAT Domains”, October 1999 
(Informational) 

 RFC 3193, “Securing L2TP using IPsec”, November 2001 (Standards Track) 

 RFC 3554, “On the Use of Stream Control Transmission Protocol (SCTP) with IPsec”, July 2003 
(Standards Track) 

 RFC 3456, “Dynamic Host Configuration Protocol (DHCPv4) Configuration of IPsec Tunnel 
Mode”, January 2003 (Standards Track) 

 RFC 3457, “Requirements for IPsec Remote Access Scenarios”, January 2003 (Informational) 

 RFC 3554, “On the Use of Stream Control Transmission Protocol (SCTP) with IPsec”, July 2003 
(Standards Track) 
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 RFC 3566, “The AES-XCBC-MAC-96 Algorithm and Its Use with IPsec”, September 2003 
(Standards Track) 

 RFC 3585, “IPsec Configuration Policy Information Model”, August 2003 (Standards Track) 

 RFC 3602, “The AES-CBC Cipher Algorithm and Its Use with IPsec”, September 2003 (Standards 
Track) 

 RFC 3715, “IPsec-Network Address Translation (NAT) Compatibility Requirements”, March 
2004 (Informational) 

 RFC 3776, “Using IPsec to Protect IPv6 Signaling Between Mobile Nodes and Home Agents”, 
June 2004 (Standards Track) 

 RFC 3884, “Use of IPsec Transport Mode for Dynamic Routing”, September 2004 (Informational) 

 RFC 3947, “Negotiation of NAT-Traversal in the IKE”, January 2005 (Standards Track) 

 RFC 3948, “UDP Encapsulation of IPsec ESP Packets”, January 2005 (Standards Track) 

 RFC 4025, “A Method for Storing IPsec Keying Material in DNS”, March 2005 (Standards Track) 

 RFC 4106, “The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload 
(ESP)”, June 2005 (Standards Track) 

 RFC 4109, “Algorithms for Internet Key Exchange version 1 (IKEv1)”, May 2005 (Standards 
Track) 

 RFC 4196, “The SEED Cipher Algorithm and Its use with IPsec”, January 2006 (Standards Track) 

 RFC 4301, “Security Architecture for the Internet Protocol”, December 2005 (Standards Track) 

 RFC 4302, “IP Authentication Header”, December 2005 (Standards Track) 

 RFC 4303, “IP Encapsulating Security Payload (ESP)”, December 2005 (Standards Track) 

 RFC 4304, “Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation 
(DOI) for Internet Security Association and Key Management Protocol (ISAKMP)”, December 
2005 (Standards Track) 

 RFC 4306, “Internet Key Exchange (IKEv2) Protocol”, December 2005 (Standards Track) 

 RFC 4307, “Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)”, 
December 2005 (Standards Track) 

 RFC 4308, “Cryptographic Suites for IPsec”, December 2005 (Standards Track) 

 RFC 4309, “Using Advanced Encryption Standard (AES) CCM Mode with IPsec Encapsulating 
Security Payload (ESP)”, December 2005 (Standards Track) 

 RFC 4312, “The Camellia Cipher Algorithm and Its Use With IPsec”, December 2005 (Standards 
Track) 

 RFC 4430, “Kerberized Internet Negotiation of Keys (KINK)”, March 2006 (Standards Track) 

 RFC 4322, “Opportunistic Encryption using the Internet Key Exchange (IKE)”, December 2005 
(Informational) 

 RFC 4434, “The AES-XCBC-PRF-128 Algorithm for the Internet Exchange Protocol (IKE)”, February 
2006 (Standards Track) 

 RFC 4494, “The AES-CMAC-96 Algorithm and Its Use with IPsec”, June 2006 (Standards Track) 

 RFC 4543, “The Use of Galois Message Authentication Code (GMAC) in IPsec ERP and AH”, May 
2006 (Standards Track) 

 RFC 4555, “IKEv2 Mobility and Multihoming Protocol (MOBIKE)”, June 2006 (Standards Track) 

 RFC 4615, “The Advanced Encryption Standard-Cipher-based Message Authentication Code-
Pseudo-Random Function-128 (AES-CMAC-PRF-128) Algorithm for the Internet Key Exchange 
Protocol (IKE)”, August 2006 (Standards Track) 
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 RFC 4718, “IKEv2 Clarifications and Implementations Guidelines”, October 2006 
(Informational) 

 RFC 4807, “IPsec Security Policy Database Configuration MIB”, March 2007 (Standards Track) 

 RFC 4809, “Requirements for an IPsec Certificate Management Profile”, February 2007 
(Informational) 

 RFC 4835, “Cryptographic Algorithm Implementation Requirements for Encapsulating Security 
Payload (ESP) and Authentication Header (AH)”, April 2007 (Standards Track) 

 RFC 4868, “Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec”, May 2007 
(Standards Track) 

 RFC 4869, “Suite B Cryptographic Suites for IPsec”, May 2007 (Informational) 

 RFC 4877, “Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture”, April 2007 
(Standards Track) 

 RFC 4891, “Using IPsec to Secure IPv6-in-IPv4 Tunnels”, May 2007 (Informational) 

 RFC 4894, “Use of Hash Algorithms in Internet Key Exchange (IKE) and IPsec”, May 2007 
(Informational) 

 RFC 4945, “The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX”, August 
2007 (Standards track) 

 RFC 5265, “Mobile IPv4 Traversal across IPsec-Based VPN Gateways”, June 2008 (Standards 
Track) 

 RFC 5374, “Multicast Extensions to the Security Architecture for the Internet Protocol”, 
November 2008 (Standards Track) 

 RFC 5386, “Better-Than-Nothing Security: An Unauthenticated Mode of IPsec”, November 2008 
(Standards Track) 

 RFC 5406, “Guidelines for Specifying the Use of IPsec Version 2”, February 2009 (Best Current 
Practice) 

 RFC 5529, “Modes of Operation for Camellia for Use with IPsec”, April 2009 (Standards Track) 

 RFC 5566, “BGP IPsec Tunnel Encapsulation Attribute”, June 2009 (Standards Track) 

 RFC 5660, “IPsec Channels: Connection Latching”, October 2009 (Standards Track) 

 RFC 5755, “An Internet Attribute Certificate Profile for Authorization”, January 2010 (Standards 
Track) 

 
 
6.1.2 – Security Association, Security Association Database and Security Parameter Index 
 
A Security Association (SA) is a collection of which protocols and algorithms to use for authentication 
and encryption, together with the keys used, for communication in one direction between two IPsec 
enabled nodes (e.g. From Alice to Bob). A different SA is created for communication in the other 
direction, between the same two nodes (e.g. from Bob to Alice). Each pair of communicating IPsec 
nodes require an SA for each direction that data will be sent between them (normally both directions). 
Each node stores both SAs for a connection in its SADB. It refers to the SA for outgoing traffic when it 
sends packets, and the SA for incoming traffic when it receives packets. When a secure connection is set 
up the first time (or if anything is changed) then the relevant Security Associations are negotiated and 
stored.  
 
A Security Association Database (SADB) is a collection of Security Associations, on a given node. Each 
IPsec enabled node has its own SADB (this is not stored in a central DBMS, and in fact does not resemble 
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what most people would call a Database – it’s really more of a simple table). As the node negotiates 
Security Associations with other nodes, it stores each new one into its SADB. 
 
The Security Parameter Index (SPI) is an index into the SADB. An SPI together with a destination IP 
address uniquely identifies a particular security association. 
 
 
6.1.3 – IPsec Transport Mode and IPsec Tunnel Mode 
 
There are two modes in which a given IPsec connection can operate: Transport Mode and Tunnel Mode.  
 
In Transport Mode, with AH, only the packet payload plus certain fields in the packet headers (including 
source and destination IP addresses and source and destination port numbers) are authenticated. This 
means the contents of the payload and those header fields are included in the calculation of the AH 
cryptographic checksum using HMAC. None of those fields are modified in any way by IPsec. Therefore 
the original addresses are used for routing of the packet. However, if NAT modifies any of these header 
fields as the packet goes through a NAT gateway (which is the normal behavior of NAT) then the 
cryptographic checksum will fail when the packet is received (after all, someone has tampered with the 
packet contents).  
 
In IPv4 Transport Mode, the AH packet header is inserted after the IP header, but before the TCP 
header, as follows: 
 
                   BEFORE APPLYING AH 

             ---------------------------- 

       IPv4  |orig IP hdr  |     |      | 

             |(any options)| TCP | Data | 

             ---------------------------- 

 

                   AFTER APPLYING AH 

             ------------------------------------------------------- 

       IPv4  |original IP hdr (any options) | AH | TCP |    Data   | 

             ------------------------------------------------------- 

             |<- mutable field processing ->|<- immutable fields ->| 

             |<----- authenticated except for mutable fields ----->| 

 

In IPv6 Transport Mode, the original IP packet header comes first, followed by one or more extension 
headers, one of which is the new AH header, followed by the TCP (or UDP) header, then data field 
(payload).  
 
                        BEFORE APPLYING AH 

             --------------------------------------- 

       IPv6  |             | ext hdrs |     |      | 

             | orig IP hdr |if present| TCP | Data | 

             --------------------------------------- 

 

                       AFTER APPLYING AH 

            ------------------------------------------------------------ 

      IPv6  |             |hop-by-hop, dest*, |    | dest |     |      | 

            |orig IP hdr  |routing, fragment. | AH | opt* | TCP | Data | 

            ------------------------------------------------------------ 

            |<--- mutable field processing -->|<-- immutable fields -->| 

            |<---- authenticated except for mutable fields ----------->| 
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                  * = if present, could be before AH, after AH, or both 

 

 
In Transport Mode with ESP, only the TCP header and the data field (payload) are encrypted. No other 
header fields are encrypted, or the packet could not be delivered. Transport mode is used only for host-
to-host communications. No IPsec gateway is required. Any node involved in a Transport Mode IPsec 
connection must have support for IPsec Transport Mode. If automated key exchange is to be used, those 
nodes must also support a common Key Exchange protocol (IKEv1, IKEv2 or KINK). If available, IKEv2 is 
preferred. If IKE is used, each node requires an appropriate IPsec digital certificate that binds the public 
key to their IP address(es). If KINK is used, then a Kerberos Key Distribution Center must be available to 
all nodes using it. 
 
In IPv4 Transport Mode with ESP, the original IP header comes first, followed by the ESP header, 
followed by the TCP (or UDP) header, followed by the data. With ESP, after the data field, there is an ESP 
Trailer and an Integrity Check Value (ICV). Encryption is done on the TCP header, the Data field (payload) 
and the ESP Trailer. Integrity (for the ICV) covers those fields plus the ESP header. 
 
                  BEFORE APPLYING ESP 

             ---------------------------- 

       IPv4  |orig IP hdr  |     |      | 

             |(any options)| TCP | Data | 

             ---------------------------- 

 

                  AFTER APPLYING ESP 

             ------------------------------------------------- 

       IPv4  |orig IP hdr  | ESP |     |      |   ESP   | ESP| 

             |(any options)| Hdr | TCP | Data | Trailer | ICV| 

             ------------------------------------------------- 

                                 |<---- encryption ---->| 

                           |<-------- integrity ------->| 

 
 
In IPv6 Transport Mode with ESP, the original IP header comes first, followed by one or more extension 
headers, one of which is the ESP extension header, followed by the original TCP header, then the data 
field (the packet payload). As with IPv4, there is an ESP trailer, and an ESP ICV. Encryption is done on any 
extension headers after the ESP extension header, the TCP header, the Data field (payload) and the ESP 
Trailer. Integrity (for the ICV) covers those fields plus the ESP header. 
 
                      BEFORE APPLYING ESP 

             --------------------------------------- 

       IPv6  |             | ext hdrs |     |      | 

             | orig IP hdr |if present| TCP | Data | 

             --------------------------------------- 

 

                      AFTER APPLYING ESP 

             --------------------------------------------------------- 

       IPv6  | orig |hop-by-hop,dest*,|   |dest|   |    | ESP   | ESP| 

             |IP hdr|routing,fragment.|ESP|opt*|TCP|Data|Trailer| ICV| 

             --------------------------------------------------------- 

                                          |<--- encryption ---->| 

                                      |<------ integrity ------>| 

 

                 * = if present, could be before ESP, after ESP, or both 
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In Tunnel Mode (with AH and/or ESP), the entire original IP packet (all headers plus the payload) are 
encrypted and/or authenticated. The result is encapsulated into a new IP packet with new headers. This 
encapsulation is added to packets on the way out by an IPsec tunnel gateway, and removed on the way 
at the other end of the network path by another IPsec tunnel gateway. In between, it looks like a normal 
IPv4 (or IPv6) packet that has an odd looking payload, and is routed like any other packet. The IP version 
of the inner packet does not have to be the same as the IP version of the outer packet. You can tunnel 
IPv6 packets over IPv4, or IPv4 packets over IPv6. The node you connect to must support the version(s) 
of IP you send to it, though. After the encapsulation is removed and the authentication and/or 
encryption are removed, the resulting packet is forwarded to the inside of the tunnel gateway, where it 
continues on to its destination.  
 
In IPv4 Tunnel Mode with AH, the outer IP header comes first (possibly with options), followed by the 
new AH header, followed by the original entire packet. 
 
        ---------------------------------------------------------------- 

   IPv4 |                              |    | orig IP hdr*  |   |      | 

        |new IP header * (any options) | AH | (any options) |TCP| Data | 

        ---------------------------------------------------------------- 

        |<- mutable field processing ->|<------ immutable fields ----->| 

        |<- authenticated except for mutable fields in the new IP hdr->| 

 

 

In IPv6 Tunnel Mode with AH, the outer IP header comes first, followed by one or more extension 
headers, including the AH extension header, followed by the original entire packet (which itself may 
contain extension packet headers, but they won’t be processed until after the packet is de-tunneled). 
 

 

        -------------------------------------------------------------- 

   IPv6 |           | ext hdrs*|    |            | ext hdrs*|   |    | 

        |new IP hdr*|if present| AH |orig IP hdr*|if present|TCP|Data| 

        -------------------------------------------------------------- 

        |<--- mutable field -->|<--------- immutable fields -------->| 

        |       processing     | 

        |<-- authenticated except for mutable fields in new IP hdr ->| 

 

          * = if present, construction of outer IP hdr/extensions and 

              modification of inner IP hdr/extensions is discussed in 

              the Security Architecture document. 

 

 
In IPv4 Tunnel Mode with ESP, the outer IP header comes first, followed by the ESP header, followed by 
any options from the original packet header, followed by the TCP (or UDP) header, followed by the data 
field (payload). Again, the data is followed by an ESP Trailer and ESP ICV. Encryption covers everything 
after the ESP header, up to and including the ESP trailer. The integrity value covers all of that plus the 
ESP header. 
 
                 BEFORE APPLYING ESP 

            ---------------------------- 

      IPv4  |orig IP hdr  |     |      | 

            |(any options)| TCP | Data | 

            ---------------------------- 

 

                 AFTER APPLYING ESP 
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            ----------------------------------------------------------- 

      IPv4  | new IP hdr* |     | orig IP hdr*  |   |    | ESP   | ESP| 

            |(any options)| ESP | (any options) |TCP|Data|Trailer| ICV| 

            ----------------------------------------------------------- 

                                |<--------- encryption --------->| 

                          |<------------- integrity ------------>| 

 

In IPv6 Tunnel Mode with ESP, the outer packet IP packet header comes first followed by any new 
packet header extensions, followed by the ESP header, then the entire original packet. As before, the 
data field (payload) is now followed by the ESP trailer and the ESP ICV.  Encryption covers everything 
after the ESP header, up to and including the ESP trailer. The integrity value covers all of that plus the 
ESP header. 
 
                      BEFORE APPLYING ESP 

            --------------------------------------- 

      IPv6  |             | ext hdrs |     |      | 

            | orig IP hdr |if present| TCP | Data | 

            --------------------------------------- 

 

                     AFTER APPLYING ESP 

 

            ------------------------------------------------------------ 

      IPv6  | new* |new ext |   | orig*|orig ext |   |    | ESP   | ESP| 

            |IP hdr| hdrs*  |ESP|IP hdr| hdrs *  |TCP|Data|Trailer| ICV| 

            ------------------------------------------------------------ 

                                |<--------- encryption ---------->| 

                            |<------------ integrity ------------>| 

 

            * = if present, construction of outer IP hdr/extensions and 

                modification of inner IP hdr/extensions is discussed in 

                the Security Architecture document. 

 

 

The IPsec tunnel processing can be physically located inside a gateway firewall or router, or it can be a in 
a node that does just IPsec tunneling, on the inside of an existing router or firewall. All IPsec related 
processing (generating or validating the HMAC cryptographic checksum and/or packet 
encryption/decryption) takes place in the tunneling IPsec node. IPsec Tunnel Mode is primarily used for 
network-to-network tunnels, but it can be used for host-to-network communications (e.g. a road 
warrior connecting into the home network securely), or even host-to-host communications (e.g. for 
private chat or VoIP). If any host (as opposed to a gateway) is involved in an IPsec Tunnel Mode 
connection, those nodes would need to support IPsec tunnel mode. If the tunnel is built between two 
gateway nodes (network-to-network tunnel), then any other node in the either network can send things 
through that tunnel without having to know anything about IPsec. If automated key exchange is to be 
used, the participating nodes must also support a common Key Exchange protocol (IKEv1, IKEv2 or 
KINK). If available, IKEv2 is preferred. If IKE is used, each node requires an appropriate IPsec digital 
certificate that binds the public key to their IP address(es). If KINK is used, then a Kerberos Key 
Distribution Center must be available to all nodes using it. 
 
An IPsec tunnel must be set up in the sending and receiving nodes so that the sending node knows what 
address to put in the outer packet header. This configuration would specify things like “all traffic 
destined for 123.45.56.00/24 is to be tunneled and sent to the gateway located at 123.45.67.1”, or 
“Accept IPsec tunneled traffic from the node which is located at 87.65.34.21, de-tunnel it, and route the 
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inside packet onto the LAN”. Regardless of what transport the original traffic used (TCP or UDP), the 
tunneled traffic will be over UDP. This introduces additional overhead, and can complicate the built-in 
error recovery mechanism in TCP. The IP addresses in the outer packet header are not authenticated.  
 
If IPv4 tunneled traffic crosses any router, the addresses of all nodes musts be valid global unicast IP 
addresses (although this could be simulated using BINAT with a node that has a private IP address 
behind a NAT gateway). It would be possible to create an IPsec path over IPv4 entirely within a routing 
domain using private IP addresses. Basically there must be a flat address space (or a reasonable 
facsimile thereof) over the entire path of the connection. A classic problem with VPNs connecting nodes 
in disjoint private networks is that the private address spaces in the two networks must not overlap. If 
two companies are both using 10.0.0.0/8 as their private addresses, either VPNs will not work between 
them, or at least one network must renumber (e.g. to 172.16.0.0/12). If you have an HQ network and 
several branch offices, you might want to use 10.0.0.0/16 for HQ, 10.1.0.0/16 for the first branch office, 
10.2.0.0/16 for the second branch office, etc. This would allow up to 256 branch offices, each with up to 
65,535 nodes. This way, if you do want to build VPNs between them someday, there will not be any 
overlap. 
 
 
6.1.4 – IPsec over IPv6 
 
 In IPv6, none of the issues related to NAT arise, since all nodes can easily obtain global unicast IPv6 
addresses, and the entire world is a single flat address space. IPsec works beautifully over IPv6, and this 
is one of the strongest arguments for migrating to Dual Stack sooner rather than later. Use the IPv6 side 
for protocols that require a flat address space, such as IPsec, SIP, P2P, etc. Use the IPv4 side for legacy 
applications like web surfing, e-mail, etc. You can gradually move those over to IPv6 as well. 
 
The IPv6 packet header design supports IPsec very well. There are two packet header extensions 
defined, one for AH and one for ESP. The AH extension header will be inserted if and only if AH is used 
on that packet. For details, see RFC 4302, “IP Authentication Header”. The ESP extension header will be 
inserted if and only if ESP is used on that packet. For details, see RFC 4303, “IP Encapsulating Security 
Payload (ESP)”. 
 
 
6.1.5 – IPsec in Multicast Networks 
 
It is possible to deploy IPsec in a multicast network. Security Association negotiation is rather more 
complicated in a one-to-many connection than in a one-to-one connection. RFC 5374, “Multicast 
Extensions to the Security Architecture for the Internet Protocol” covers the details. IPsec in multicast 
networks could allow content providers to control access to multicast content using ESP and some 
clever key management. For example, each valid subscriber could be issued a unique IPsec digital 
certificate (tied to their set top box) that would allow decrypting the symmetric session key used to 
encrypt the content. If they don’t pay their bill, their certificate could be revoked. 
 
 
6.1.6 – Using IPsec to secure L2TP Connections 
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L2TP (Layer 2 Tunneling Protocol) itself does not provide either privacy or authentication. RFC 3193, 
“Securing L2TP using IPsec” specifies how to use IPsec in conjunction with it to add privacy (with ESP) 
and/or authentication (with AH) to an L2TP based system. 
 
 
6.2 – Internet Key Exchange (IKE) 
 
The Internet Key Exchange (IKEv1 and IKEv2) is based on ISAKMP (Internet Security Association and Key 
Management Protocol), which is a framework for key exchange. It uses parts of the Oakley and SKEME 
(Secure Key Exchange MEchanism for Internet) protocols within this framework. Oakley describes a 
series of key exchanges, known as modes, and specifies things such as perfect forward secrecy for keys, 
identity protection and authentication. It is discussed in RFC 2412, “The Oakley Key Determination 
Protocol”. SKEME(Secure Key Exchange MEchanism for Internet) is a key exchange technique which 
provides anonymity and quick key refreshment. There is no RFC that covers SKEME, but there are some 
papers available online. There is coverage of the parts of Oakley and SKEME used in IKE in RFCs 2408 and 
2409.  
 
IKE uses the Diffie-Hellman Key Agreement protocol (see Appendix A) to securely exchange a shared 
secret, from which symmetric session keys for AH and ESP are derived. IKE is also used to mutually 
authenticate nodes to each other. Authentication can be accomplished with a pre-shared secret 
(manually distributed to each node), or by use of IPsec digital certificates (ones that bind IPv4 and/or 
IPv6 addresses to the public key). Each pair of nodes that use IPsec use IKE to do key exchange and 
mutual authentication, which results in setting up a Security Association (SA) at each end for the other 
node in the pair. 
 
IKE is usually implemented as a daemon process (a software application that starts running when the 
computer boots, and stays running until shutdown) on each IPsec enabled node, in user space. IKE 
communicates via UDP over port 500. There is no client or server role, the communication is between 
peers. Either node of a pair can initiate an IKE connection, and the other node will accept it. The AH and 
ESP packet processing is embedded in the TCP/IP stack (specifically in the IP layer), which usually runs in 
kernel space. 
 
There are two phases in an IKE connection, called (imaginatively enough) Phase 1 and Phase 2.  
 
IKE Phase 1 establishes an encrypted, authenticated communication channel between the two parties. It 
first uses the Diffie-Hellman Key Agreement protocol, which produces a shared secret. A symmetric 
session key is derived from the shared secret by both parties, which is used to encrypt further IKE 
exchanges. The goal of Phase 1 is to create a bidirectional ISAKMP Security Association (SA). Mutual 
Authentication can be accomplished using either a pre-shared secret, or via cryptographic 
challenge/response using IPsec public key digital certificates. Either a pre-shared secret, or an IPsec 
certificate must be installed on each IPsec enabled node when the system is deployed. Phase 1 can 
operate in either Main Mode or Aggressive Mode. Main Mode protects the identities of the nodes, but 
takes longer. Aggressive mode is faster, but does not protect the identities of the nodes. 
 
IKE Phase 2 uses the secure channel established in Phase 1 to negotiate additional Security Associations 
(SAs) for services such as IPsec. The output of Phase 2 is a pair of unidirectional SAs (one for traffic from 
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Alice to Bob and one for traffic from Bob to Alice). On each node, one of these SAs is used for inbound 
traffic and the other one for outbound traffic. Phase two operates in Quick Mode. 
 
Cryptographic challenge/response is used by each end to authenticate itself to the other. Each direction 
works as follows (flipping roles A and B when the second direction is done): 
 

Step 1 –Node A sends its public key digital certificate to Node B. 
 
Step 2 –Node B verifies Node A’s digital certificate by checking its digital signature, its expiration 
date, and its revocation status. It also climbs the chain of trust to a trusted root key. If the 
identity in the certificate is an IP address, it must match the source IP address of the IKE 
connection. 
 
Step 3 –Node B generates a random string and encrypts it using Node A’s public key (from its 
digital certificate) and sends it as a challenge to Node A. 
 
Step 4 –Node A decrypts the challenge using its own private key and returns the result to Node 
B as its response. 
 
Step 5 –Node B compares the response to the original string. If they match, that is proof that 
Node A possesses the private key associated with the public key in Node A’s digital certificate 
(without Node A revealing its private key to anyone). This authenticates Node A to Node B. 

 
An IPsec digital certificate is like a Server (SSL) digital certificate or a Client digital certificate. The primary 
difference is what identity information the public key is bound to. In a Server cert, the identity 
information is an FQDN (e.g. www.example.com) and an organization name (in the distinguished name). 
In a Client cert, the identity information is a person’s name and e-mail address (in the distinguished 
name). It is also possible for an IPsec certificate to specifically include IKE as a valid key usage 
(id_kp_ipsecIKE attribute). In an IPsec cert, there are several possibilities for the identity: 
 

 Individual IPv4 and/or IPv6 address (ID_IPV4_ADDR and ID_IPV6_ADDR). These do not work well 
if the connection traverses NAT. There is no problem with using IPv6 addresses. 

 IPv4 or IPv6 subnet (ID_IPv4_ADDR_SUBNET and ID_IPv6_ADDR_SUBNET). The same issues are 
involved if the connection traverses NAT. For example, you could identify your node as being in 
the subnet 2001:418:5403:3000::/64.  

 IPv4 or IPv6 address range (ID_IPv4_ADDR_RANGE and ID_IPV6_ADDR_RANGE). This is used for 
specifying a block of addresses that doesn’t happen to fall on (power of 2) subnet boundaries 
(e.g. all addresses from 2001:418:5403:3000::100 to 2001:418:5403:3000::200). 

 FQDN (ID_FQDN). This depends on trusting the mapping from FQDN to IP address; hence DNS 
should only be used if DNSSEC is deployed. Otherwise the resolution from FQDN to IP address 
must be handled by some other means, which is trusted. Again, NAT can cause problems with 
this. 

 
If IP addresses are specified, during the authentication process the source IP address of the IKE 
connection must match the IP address (byte for byte) in the IPsec digital certificate. This is similar to 
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SSL/TLS, where the node name you are connecting to must match the FQDN in the server certificate. In 
SSL, if you connect to an alias name or a numeric IP address, you will get an error. 
 
 
6.2.1 – Internet Key Exchange version 2 (IKEv2) 
 
IKEv1 was defined in November 1998. There are still some IPsec implementations that support only 
IKEv1, so some IKEv2 implementations also support IKEv1 for backward compatibility (e.g. RACOON2 in 
BSD). There were many issues with IKEv1, which led to the creation of IKEv2 in December 2005. The 
issues with IKEv1 include the following: 
 

 The specification of IKEv1 was spread over three basic RFCs (2407, 2408 and 2409), plus others 
for NAT traversal (3715), etc. In comparison, almost all of IKEv2 was specified in RFC 4306. The 
list of supported cryptographic algorithms was split off into RFC 4307 for ease of updating the 
algorithm suite in the future. 

 IKEv1 had no support for SCTP or Mobile IP protocols. Both are supported in IKEv2. For SCTP, see 
RFC 3554, “On the Use of Stream Control Transmission Protocol (SCTP) with IPsec”. For Mobile 
IP, See RFC 4877, “Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture” 
(Section 7.3), and RFC 4555, “IKEv2 Mobility and Multihoming Protocol (MOBIKE)”. 

 IKEv1 had eight distinct initial exchange mechanisms, each of which had advantages and 
disadvantages, vs. one four-message initial exchange in IKEv2. 

 IKEv1 included an excessive number of cryptographic algorithms which resulted in complex 
implementation and long (and costly) certification processes (e.g. Common Criteria and FIPS 
140-2). For details, see RFC 2409, updated by RFC 4109, “Algorithms for Internet Key Exchange 
version 1 (IKEv1)”. In comparison, IKEv2 reduced the number of supported cryptographic 
algorithms. For details, see RFC 4306, “Cryptographic Algorithms for Use in the Internet Key 
Exchange Version 2 (IKEv2)”. 

 IKEv1 had reliability issues due to poor state management. This could result in a hung node, 
requiring Dead Peer Detection (which was never standardized, leading to interoperability 
issues). IKEv2 added sequence numbers and acknowledgements to greatly improve state 
management. 

 IKEv1 had issues with Denial of Service attacks, where connections from spoofed addresses 
could cause it to do expensive asymmetric key processing. IKEv2 does such processing only after 
it verifies the validity and existence of a client. 

 The IPv6 Ready test centers have no certification tests for IKEv1, but they do for IKEv2.They also 
have certification tests for IPsec over IPv6. 

 
Some IPv4 routers (especially ones for home or small office) include an IPsec Helper function. This routes 
all IPsec traffic to the first node that negotiates a Security Association (SA). The assumption is that there 
is only one IPsec endpoint inside the home network. This is yet another attempt to make IPsec work 
over NAT. In IPv6 routers, there is no need for any IPsec Helper function. 
 
Another issue with NAT involves fragmentation. During IKE, if an IPsec digital certificate is sent, this 
often is larger than a single packet, which leads to packet fragmentation. Many NAT gateways will 
simply drop fragmented packets, as these are usually part of a hacking attack. This is never a problem in 
IPv6. 
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It should be obvious by now why there are so many problems using IPsec in the legacy First Internet. 
NAT helped keep the Internet going while IPv6 was being created, but now that IPv6 is complete and 
available, we should switch to it at least for certain protocols (especially IPsec and SIP) rather than 
create ever more complex workarounds to fix the problems caused by NAT. 
 
 
6.2.3 – Kerberized Internet Negotiation of Keys - KINK 
 
There is an alternative to IKE for securely exchanging keys among IPsec enabled nodes, called KINK. It is 
defined in RFC 4430, “Kerberized Internet Negotiation of Keys (KINK)”. With IKE, each node needs an 
IPsec digital certificate to authenticate itself to other nodes, which is done on a peer-to-peer basis. A full 
PKI must be deployed to support the issuance and maintenance of these certificates. With KINK, nodes 
need only mutually authenticate with the Authentication Server of the Key Distribution Center (KDC) of 
a Kerberos facility. No IPsec digital certificates are required for each node, and no PKI is required. 
However, there must be a Kerberos KDC that can do the necessary authentication, and all participating 
IPsec enabled nodes need client-side support for Kerberos and KINK.  Deploying Kerberos securely can 
be just as big a challenge as deploying a PKI. If your nodes will need to connect over IPsec to nodes in 
other organizations, KINK is probably not the best way to go. IKE is clearly the preferred Key Exchange 
technology. 
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6.3 – Mobile IP 
 
With IPsec, the protocols for IPv4 and IPv6 are fairly similar, and for the most part, there is a single set of 
standards that cover both IPv4 and IPv6. The main difference is the almost universal presence of NAT in 
IPv4 and total absence of it in IPv6. With Mobile IP, on the other hand, the support for IPv4 and IPv6 are 
quite different, each has its own set of standards, and they continue to diverge more and more over 
time. Mobile IPv6 is much more capable than Mobile IPv4, and due to the imminent exhaustion of the 
IPv4 address space, most new research is being done on Mobile IPv6, not Mobile IPv4. Again, the biggest 
problem with Mobile IPv4 is the presence of NAT in most real-world IPv4 networks. 
 
Mobile IPv4 requires that all nodes (mobile node, correspondent node and home agent) support IPv4 (it 
doesn’t matter whether or not any of them also support IPv6). Mobile IPv4 is basically an application of 
tunneling, and the tunnels are “4in4” (IPv4 tunneled over IPv4). There is no support at all for IPv6 in 
Mobile IPv4. If you plug your node into an IPv6-only foreign network, Mobile IPv4 will not work. 
 
Mobile IPv6 requires that all nodes (mobile node, correspondent node and home agent) support IPv6 (it 
doesn’t matter whether or not any of them also support IPv4). Mobile IPv6 is basically an application of 
tunneling, and the tunnels are “6in6” (IPv6 tunneled over IPv6). There is no support at all for IPv4 in 
Mobile IPv6. If you plug your node into an IPv4-only foreign network, Mobile IPv6 will not work. Mobile 
IPv6 has one important aspect that is completely missing in Mobile IPv4, which is route optimization. It is 
likely that the mobile node may have a more direct (shorter) path to the correspondent node than via 
the home agent, and Mobile IPv6 provides a mechanism to help find and switch over to that better path. 
Mobile IPv4 has no such mechanism. 
 
There are efforts underway to produce a Mobile IP that can work with IPv4 and/or IPv6, on dual stack 
nodes, and use 4in6 or 6in4 tunnels, as needed. It may include 6to4 and 4to6 translation as well. So far 
this is still in the early days. There is a start on this in RFC 5555. There are many difficult issues involved 
in making this work in general. 
 
Until “dual stack” Mobile IP evolves, the worlds of Mobile IPv4 and Mobile IPv6 are pretty much disjoint. 
If you have a dual stack node, and want to go mobile, you would need two complete (and independent) 
Mobile IP systems (client, home agent, tunnel scheme, etc) – one for IPv4 and one for IPv6. Even if you 
deployed such an infrastructure, only the Mobile IPv6 system would be able to optimize routes. 
 
Both Mobile IPv4 and Mobile IPv6 require extensions in the TCP/IP stack to work, which are not 
normally included in a base distribution today. For example, Windows 7 includes the extensions to work 
as a Correspondent Node, but not as a Mobile Node. Few routers include the extensions to work as a 
Home Agent. In general, there is very little in the way of commercial or open source software that 
includes support for Mobile IPv4 or Mobile IPv6 at the present. This is really “beyond the bleeding edge” 
at this point in time. Due to incompatibilities with NAT (and the need for all addresses to be globally 
routable), it is not likely that many vendors will be willing to do much product development on Mobile 
IPv4. The absence of NAT in IPv6 (together with the presence of route optimization in Mobile IPv6) may 
increase the probability of products being developed based on Mobile IPv6. 
 
The best information on Mobile IPv6 I’ve found is in the book “Mobile IPv6: Protocols and 
Implementation” by Qing Li, Tatuya Junmei and Keiichi Shima (three of the developers from the Kame 
project). This is published by Morgan Kaufmann. 
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6.3.1 – Mobile IPv4 
 
The following RFCs are related to Mobile IPv4: 
 

 RFC 2290, “Mobile-IPv4 Configuration Option for PPP IPCP”, February 1998 (Standards Track) 

 RFC 2794, “Mobile IP network Access Identifier Extension for IPv4”, March 2000 (Standards 
Track) 

 RFC 2977, “Mobile IP Authentication, Authorization, and Accounting Requirements”, October 
2000 (Informational) 

 RFC 3024, “Reverse Tunneling for Mobile IP, revised”, January 2001 (Standards Track) 

 RFC 3344, “IP Mobility Support for IPv4”, August 2002 (Standards Track) 

 RFC 3519, “Mobile IP Traversal of Network Address Translation (NAT) Devices”, April 2003 

 RFC 3543, “Registration Revocation in Mobile IPv4”, August 2003 (Standards Track) 

 RFC 3846, “Mobile IPv4 Extensions for Carrying Network Access Identifiers”, June 2004 
(Standards Track) 

 RFC 3957, “Authentication, Authorization and Accounting (AAA) Registration Keys for Mobile 
IPv4”, March 2005 (Standards Track) 

 RFC 4004, “Diameter Mobile IPv4 Application”, August 2005 (Standards Track) 

 RFC 4058, “Protocol for Carrying Authentication for Network Access Requirements (PANA)”, 
May 2005 (Informational) 

 RFC 4064, “Experimental Message, Extensions and Error Codes for Mobile IPv4”, May 2006 
(Standards Track) 

 RFC 4093, “Problem Statement: Mobile IPv4 Traversal of Virtual Private Network (VPN) 
Gateways”, August 2005 (Informational) 

 RFC 4433, “Mobile IPv4 Dynamic Home Agent (HA) Assignment”, March 2006 (Standards Track) 

 RFC 4636, “Foreign Agent Error Extension for Mobile IPv4”, October 2006 (Standards Track) 

 RFC 4721, “Mobile IPv4 Challenge/Response Extensions (Revised)”, January 2007 (Standards 
Track) 

 RFC 4977, “Problem Statement: Dual Stack Mobility”, August 2007 (Informational) 

 RFC 4917, “Mobile IPv4 message String Extension”, June 2007 (Standards Track) 

 RFC 5030, “Mobile IPv4 RADIUS Requirements”, October 2007 (Informational) 

 RFC 5177, “Network Mobility (NEMO) Extensions for Mobile IPv4”, April 2008 (Standards 
Track) 

 RFC 5265, “Mobile IPv4 Traversal across IPsec-Based VPN Gateways”, June 2008 (Standards 
Track) 

 RFC 5266, “Secure Connectivity and Mobility Using Mobile IPv4 and IKEv2 Mobility and 
Multihoming (MOBIKE)”, June 2008 (Best Current Practices) 

 RFC 5446, “Service Selection for Mobile IPv4”, February 2009 (Informational) 

 RFC 5454, “Dual-Stack Mobile IPv4”, March 2009 (Standards Track) 
 
 
6.3.2 – Mobile IPv6 
 
The following RFCs are related to Mobile IPv6: 
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 RFC 3775, “Mobility Support in IPv6”, June 2004 (Standards Track) 

 RFC 3776, “Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home 
Agents”, June 2004 (Standards Track) 

 RFC 3963, “Network Mobility (NEMO) Basic Support Protocol”, January 2005 (Standards Track) 

 RFC 4260, “Mobile IPv6 Fast Handovers for 802.11 Networks”, November 2005 (Informational) 

 RFC 4285, “Mobile Node Identifier Option for Mobile IPv6 (MIPv6)”, November 2005 (Standards 
Track) 

 RFC 4285, “Authentication Protocol for Mobile IPv6”, January 2006 (Informational) 

 RFC 4294, “IPv6 Node Requirements”, April 2006 (Informational) 

 RFC 4295, “Mobile IPv6 Management Information Base”, April 2006 (Standards Track) 

 RFC 4449, “Securing Mobile IPv6 Route Optimization Using a Static Shared key”, June 2006 
(Standards Track) 

 RFC 4487, “Mobile IPv6 and Firewalls: Problem Statement”, May 2006 (Informational) 

 RFC 4584, “Extension to Sockets API for Mobile IPv6”, July 2006 (Informational) 

 RFC 4866, “Enhanced Route Optimization for Mobile IPv6”, May 2007 (Standards Track) 

 RFC 4877, “Mobile IPv6 Operation with IKEv2 and Revised IPsec Architecture”, April 2007 
(Standards Track) 

 RFC 4882, “IP Address Location Privacy and Mobile IPv6: Problem Statement”, May 2007 
(Informational) 

 RFC 4980, “Analysis of Multihoming in Network Mobility Support”, October 2007 (Informational) 

 RFC 5014, “IPv6 Socket API for Source Address Selection”, September 2007 (Informational) 

 RFC 5026, “Mobile IPv6 Bootstrapping in Split Scenario”, October 2007 (Standards Track) 

 RFC 5094, “Mobile IPv6 Vendor Specific Option”, December 2007 (Standards Track) 

 RFC 5096, “Mobile IPv6 Experimental Messages”, December 2007 (Standards Track) 

 RFC 5149, “Service Selection for Mobile IPv6”, February 2008 (Informational) 

 RFC 5213, “Proxy Mobile IPv6”, August 2008 (Standards Track) 

 RFC 5269, “Distributing a Symmetric Fast Mobile IPv6 (FMIPv6) Handover Key Using SEcure 
Neighbor Discovery (SEND)”, June 2008 (Standards Track) 

 RFC 5271, “Mobile IPv6 Fast Handovers for 3G CDMA Networks”, June 2008 (Informational) 

 RFC 5380, “Hierarchical Mobile IPv6 (HMIPv6) Mobility Management”, October 2008 (Standards 
Track) 

 RFC 5419, “Why the Authentication Data Suboption is Needed for Mobile IPv6 (MIPv6)”, January 
2009 (Informational) 

 RFC 5447, “Diameter Mobile IPv6: Support for Network Access Server to Diameter Server 
Interaction”, February 2009 (Standards Track) 

 RFC 5380, “Hierarchical Mobile IPv6 (HIMPv6) Mobility Management”, October 2008 (Standards 
Track) 

 RFC 5488, “Network Mobility (NEMO) Management Information Base”, April 2009 (Standards 
Track) 

 RFC 5555, “Mobile IPv6 Support for Dual Stack Hosts and Routers”, June 2009 (Standards 
Track) 

 RFC 5568, “Mobile IPv6 Fast Handovers”, July 2009 (Standards Track) 

 RFC 5637, “Authentication, Authorization and Accounting (AAA) Goals for Mobile IPv6”, 
September 2009 (Informational) 
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 RFC 5778, “Diameter Mobile IPv6: Support for Home Agent to Diameter Server Interaction”, 
February 2010 (Standards Track) 

 RFC 5779, “Diameter Proxy Mobile IPv6: Mobile Access Gateway and Local Mobility Anchor 
Interaction with Diameter Server”, February 2010 (Standards Track) 

 
 
6.3.3 – The Building Blocks of Mobile IP 
 
As technology progresses, and the size and weight of our network capable devices continue to shrink, 
those devices are becoming more and more mobile. Desktop personal computers are more mobile than 
mainframes or minicomputers; notebook computers are more mobile than desktop computers; 
netbooks and tablet computers are more mobile than notebook computers; and smart phones and 
other consumer products with wireless connectivity (e.g. MP3 players) are extremely mobile. The 
connections can be via wired Ethernet or wireless (Wi-Fi, Wi-Max, etc). If the movement of your node 
only involves moving from one connection to another within a single network segment, there is no need 
for Mobile IP. Your node’s Home Address should work regardless of which tap of your Home Network it 
is connected to within a single subnet. If your node is moving from one subnet to another, and you want 
to continue using the same IP address, then you need mobile IP. If your node is continually moving (say 
in a car or train), and there is a series of wireless access points, each in a different subnet, you need 
Mobile IP, including fast handoff from one context to another. There are a number of components that 
are involved in a typical Mobile IP network scenario, whether we are talking Mobile IPv4 or Mobile IPv6. 
These include: 
 
Mobile Node – a node that can move relative to its Home Network. The mobile node must have support 
for Mobile Node operation. Your Mobile Node must have an address valid on the Foreign Network to 
which it is connected (which is called the Foreign Address, and is used primarily as one end of an IP-in-IP 
tunnel to your Home Network), as well as an address on the home network (which is called the Home 
Address, and sends and receives packets only via the tunnel to the Home Network). No version of 
Windows currently has support for Mobile IP Mobile Node operation out of the box. Most Open Source 
operating systems do have this support at least to some level. 
 
Home Address – the IP address of your Node that is valid (and unique) on your Home Network. This 
could be an IPv4 or IPv6 address depending on the version(s) of Mobile IP that your Node is using. 
Packets with this source address will not be routed onto the Foreign Network (where they would not 
work properly); they are pushed into the Mobile Node’s end of the IP-in-IP tunnel, and come out at the 
Home Agent which routes them onto the Home Network. Likewise, packets from the Home Network 
addressed to the Mobile Node’s Home Address will be accepted by the Home Agent and pushed into the 
Home Network end of the IP-in-IP tunnel. The packets will come out at the Mobile Node’s end of the 
tunnel, where they will be sent to your Mobile Node. This Home Address is obtained directly from 
Mobile IP, and indirectly from DHCPv4, DHCPv6 or even Stateless Address Autoconfiguration on your 
Home Network. This address could also be manually configured. 
 
Home Network – this is the network that your node (with its Home Address) would work in if it were not 
mobile. It is also the network in which your Home Agent lives.  
 
Home Agent – there must be a router in your Home Network that has support for Mobile IP, and can 
and will accept a connection from an IP-in-IP tunnel from your Mobile Node. The Home Agent will relay 



167 

 

packets from that tunnel onto the Home Network as if they had originated in your Home Network. The 
Home Agent also must accept packets addressed to your Home Address and push those into its end of 
the IP-in-IP tunnel, where they will be sent to your Mobile Node. It also must respond to ARP (IPv4) or 
ND (IPv6) queries to the Remote Node’s Home Address (by proxy), e.g. using proxy ARP. 
 
Foreign Network – the network to which the Mobile Node is now physically connected. Your Mobile 
Node must obtain an IP address (called the Foreign Address) that is valid (and not already in use) on the 
Foreign Network. This might be an IPv4 or IPv6 address, depending on what IP version the foreign 
network is running. Packets from your Mobile Node, with a source address which is your Home Address 
are pushed into the IP-in-IP tunnel by Mobile IP and come out at your Home Agent, where they are 
routed onto the Home Network as if your Node were physically present there. Packets from your Home 
Network that are addressed to your Home Address are accepted by the Home Agent which pushes them 
into its end of the IP-in-IP tunnel, and they come out into your Mobile Node, which accepts them. 
 
Foreign Address – the IP address that is valid on the foreign network, which is obtained by your Mobile 
Node, and which it uses only as the foreign end of an IP-in-IP tunnel, the other end of which is at your 
Home Agent. This could be an IPv4 or IPv6 address depending on the version(s) of IP supported on the 
Foreign Network. The Mobile IP code on your node will obtain this address via DHCPv4, DHCPv6 or 
Stateless Address Autoconfiguration. The Foreign address is used primarily as one end of an IP-in-IP 
tunnel. 
 
Correspondent Node – this is the node your Mobile Node is connecting to. It could be a fixed node or 
possibly another Mobile Node. The TCP/IP stack on that node must include support for Mobile IP 
Correspondent Node operation. This node must be reachable from your Home Network. Windows Vista 
and Windows 7 have support for Mobile IP Correspondent Node operation. With Mobile IPv6, once the 
basic routed-via-tunnel communication path is working, route optimization will attempt to find a way to 
transmit packets directly from the Mobile Node to the Correspondent Node (as opposed to going 
through the Home Agent).  
 
Foreign Agent – there is an optimization for situations where there might be a number of Mobile Nodes 
in a single Foreign Network. It involves deploying a Foreign Agent. This functionality is implemented in a 
router in the Foreign Network. It actually builds the tunnel to the Home Agent, and the Mobile Nodes 
get a free ride over that tunnel. The Mobile Nodes send packets to the Foreign Agent, which tunnels 
them to the Home Agent, which then detunnels the packets and sends them as if they had originated in 
the Home Network. Packets directed to any Mobile Node are accepted by the Home Agent (via proxy 
ARP), then tunneled to the Foreign Agent. The Foreign Agent then sends the packets (native) to the 
Mobile Node. The advantage here is only one tunnel is required from the Foreign Network to the Home 
Network. 
 
6.3.4 – Implementations 
 
There is an Open Source project called “Dynamics Mobile IP” for Linux. It appears to have reached a pre-
release version (0.81) in October 2001, and gone quiet. It appears to support only Mobile IPv4. 
 
Another Open Source project called “Transparent Mobile IP” reached version 0.5a in 2003, then went 
quiet. It also appears to be Mobile IPv4 only. 
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Sun implemented parts of Mobile IPv4, including Home Agent and Foreign Agent functionality (no 
Mobile Node or Correspondent Node functionality), for the Solaris 10 operating system. It was removed 
after Solaris 10 8/07. 
 
An implementation of Mobile IPv6 for Linux (kernel 2.4.22) was done at Helsinki University of 
Technology’s MIPL project. It includes support for Mobile Node and Home Agent functionality, and 
involves applying a patch to the Linux Kernel. 
 
Microsoft implemented the Correspondent Node functionality in Windows Vista and Windows 7, but 
not the Mobile Node functionality. 
 
The most recent Mobile IPv6 work on FreeBSD appears to have been done by the Kame project before 
they shut down, and the download is dated 2001. It was based on the FreeBSD 4.2 operating system. 
There is a discussion of how to deploy and configure Mobile IPv6 in the “Mobile IPv6” book previously 
mentioned, using the Kame IPv6 stack. The instructions do not appear to be aimed at novices. 
 
6.3.4 – Conclusions on Mobile IP 
 
Since Mobile IP is not widely deployed, and incompletely implemented, that’s all we are going to cover 
about it for now. In future editions of this book, hopefully it will be necessary to cover Mobile IPv6 in 
greater detail, because it will have matured significantly and be widely deployed. For now see the book 
on Mobile IPv6 mentioned above.
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Chapter 7 – Transition Mechanisms 
 

This chapter covers a variety of protocols and mechanisms that were created to simplify the 
introduction of IPv6 into the Internet. The goal is not to make an abrupt transition from all-IPv4 to all-
IPv6 on some kind of “flag day”. That would be unbelievably disruptive, and unlikely to succeed. The 
goal is to gradually add new capabilities that take advantage of IPv6, or work far better over it (e.g. IPsec 
VPN, SIP, Mobile IP, IPTV and most other multicast), while continuing to use IPv4 for those things that 
work tolerably well via over IPv4 with NAT (e.g. web, email, ftp, ssh, and most client-server). This allows 
immediate alleviation of the most grievous problems caused by widespread deployment of NAT and 
other shortcomings of IPv4, while allowing a longer, more controlled migration of those protocols that 
do not benefit as much from IPv6. Eventually, all protocols and applications will be migrated, and IPv4 
can quietly be dropped from operating systems and hardware. However, this will probably be 5 to 10 
years from now. As more and more applications are transitioned to IPv6, that will take the pressure off 
of the remaining stock of IPv4 addresses. 
 
Most of these transition mechanisms are defined in RFCs, and were designed as a part of the IPv6 
standard. There are many mechanisms, some with confusingly similar names, such as “6in4”, “6to4”, 
and “6over4”, which are all quite different. Most deployments of IPv6 will use one or more of these 
transition mechanisms, none will use all of them. Some of the transition mechanisms are designed for 
use in the early phases of the transition, where there is an “ocean” of IPv4 with small (but growing) 
islands of IPv6 (e.g. 6in4 tunneling). Some are for use in the later stages of the transition, where the 
Internet has flipped into an “ocean” of IPv6, with small (and shrinking) islands of IPv4 (e.g. 4in6 
tunneling). 
 
 
7.1 – Relevant Standards 
 
The following standards are relevant to IPv6 transition mechanisms: 
 

 RFC 2473, “Generic Packet Tunneling in IPv6 Specification”, December 1998 (Standards Track) 
[4in6] 

 RFC 2529, “Transmission of IPv6 over IPv4 Domains without Explicit Tunnels”, March 1999 
(Standards Track) [6over4] 

 RFC 3056, “Connection of IPv6 Domains via IPv4 Clouds”, February 2001 (Standards Track) 
[6to4] 

 RFC 3068, “An Anycast Prefix for 6to4 Relay Routers”, June 2001 (Standards Track) *6to4+ 

 RFC 3964, “Security Considerations for 6to4”, December 2004 (Informational) [6to4] 

 RFC 4213, “Basic Transition Mechanisms for IPv6 Hosts and Routers”, October 2005 (Standards 
Track) [Dual Stack, 6in4] 

 RFC 4380, “Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)”, 
February 2006 (Standards Track) [Teredo] 

 RFC 5158, “6to4 Reverse DNS Delegation Specification”, March 2008 (Informational) [6to4] 

 RFC 5214, “Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)”, March 2008 
(Informational) [ISATAP] 
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 RFC 5569, “IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)”, January 2010 
(Informational) [6rd] 

 RFC 5579, “Transmission of IPv4 Packets over Intra-Site Automatic Tunnel Addressing Protocol 
(ISATAP) Interfaces”, February 2010 (Informational) 

 RFC 5571, “Softwire Hub and Spoke Deployment Framework with Layer Two Tunneling Protocol 
Version 2 (L2TPv2)”, June 2009 (Proposed Standard) [Softwire] 

 RFC 5572, “IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)”, February 2010 
(Experimental) [TSP] 

 
For Translation between IPv4 and IPv6, you have to go to the Internet Drafts (submitted documents that 
are not yet approved and given RFC numbers). This is the cutting edge of IPv6. Drafts have a lifetime of 
six months, and often go through many iterations before being approved (the iteration number is the 
last part of the draft name, e.g. -08). To keep track of them, use: 
 
 http://datatracker.ietf.org/doc/search 
 

 draft-guo-software-6rd-ipv6-config-00, “IPv6 Host Configuration in 6rd Deployment”, 2010-13-
01 

 draft-howard-isp-ip6rdns-03, “Reverse DNS in IPv6 for Internet Service Providers”, 2010-03-08 

 draft-ietf-softwire-ipv6-6rd-08, “IPv6 via IPv4 Service Provider Networks ‘6rd’”, 2010-03-23 

 draft-lee-softwire-6rd-udp-00, “UDP Encapsulation of 6rd”, 2009-10-18 

 draft-ietf-behave-v6v4-xlate-stateful-11, “Stateful NAT64: Network Address and Protocol 
Translation from IPv6 Clients to IPv4 Servers”, 2010-03-30 

 draft-boucadair-behave-dns64-discovery-00, “DNS64 Service Location and Discovery”, 2009-10-
18 

 draft-cao-behave-dsdns64-00, “Dual Stack Hosts with DNS64”, 2010-02-12 

 draft-ietf-behave-dns64-09, “DNS64:  DNS extensions for Network Address Translation from Ipv6 
Clients to IPv4 servers”, 2010-03-30 

 draft-wing-behave-dns64-config-02, “DNS64 Resolvers and Dual-Stack Hosts”, 2010-02-12 

 draft-templin-isatap-dhcp-06, “Dynamic Host Configuration Protocol (DHCPv4) Option for the 
Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)”, 2009-12-08 

 draft-ietf-softwire-dual-stack-lite-04, “Dual-Stack Lite Broadband Deployments Following IPv4 
Exhaustion”, 2010-03-08 

 
 
7.2 – Transition Mechanisms 
 
There are four general classes of transition mechanisms to help us get from all-IPv4 through a mixture of 
IPv4 and IPv6, to eventually all-IPv6: 
 
 
7.2.1 – Co-existence 
 
Co-existence involves all client and server nodes supporting both IPv4 and IPv6 in their network stacks. 
The only mechanism in this group is the Dual Stack. This is the most general solution but also involves 
running essentially two complete networks that share the same infrastructure. It does not double 
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network traffic, as some administrators fear. Any new connection over IPv6 is typically one less 
connection over IPv4. Over time, an increasing percentage of the traffic on any network will be IPv6, but 
the only increase in overall traffic will be from the usual suspects (increasing number of applications, 
users and/or customers), not from supporting Dual Stack. In fact, at some point you will see the total 
amount of IPv4 traffic begin to decrease. You may see an increase in incoming customer connections 
due to the ability to now also accept connections from IPv6 users. When YouTube started accepting 
connections over IPv6, there was an enormous and almost instant jump in IPv6 traffic on the backbone. 
Many nodes are ready to begin using IPv6 as soon as content is available, because of automated 
tunneling. In many cases, the end users might not even have been aware that they were now connecting 
over IPv6. 
 
There is a recent variant of the dual-stack concept called Dual-Stack Lite that uses the basic dual-stack 
design, but adds in IP-in-IP tunneling and ISP based Network Address Translation to allow an ISP to share 
precious IPv4 addresses among multiple customers. It is defined in draft-ietf-softwire-dual-stack-lite-04, 
“Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion”. 
 
 
7.2.2 – Tunneling  
 
Tunneling involves creating IP-in-IP tunnels with a variety of mechanisms to allow sending IPv6 traffic 
over existing IPv4 infrastructures by adding an IPv4 packet header to the front of an entire IPv6 packet. 
This treats the entire IPv6 packet, including IPv6 packet header(s), TCP/UDP header and payload fields as 
a “black box” payload of an IPv4 packet. In the later phases of the transition, it reverses this: it treats an 
entire IPv4 packet, including IPv4 packet header and options, TCP/UDP header, and payload fields as a 
“black box” payload of an IPv6 packet. Some of these tunnel mechanisms are “automatic” (no setup 
required). Others require manual setup. Some require authentication while others do not. The benefit is 
to leverage the existing IPv4 infrastructure as a transport for IPv6 traffic, without having to wait for ISPs 
and equipment vendors to support IPv6 everywhere before anyone can start using it. This allows early 
adopters to deploy nodes and entire networks today, regardless of whether or not their ISP supports 
IPv6 today. In some cases (e.g. tunnels to a gateway router or firewall), when the ISP does provide dual-
stack service, it is a simple process to change from tunneled service to direct service, and the process is 
largely transparent to inside users. There are several organizations providing free tunneled IPv6 service 
(using various tunnel mechanisms) during the transition, to help with the adoption of IPv6. Tunneling 
mechanisms include 6in4, 4in6, 6to4, 6over4, TSP (from gogonet) and Teredo. There are many Operating 
Systems features and installable client software available to make use of these tunneling mechanisms. 
 
7.2.3 – Translation 
 
This is basically Network Address Translation (with all of its attendant problems), this time between IPv4 
and IPv6 (as opposed to the more traditional NAT which is IPv4 to IPv4). An IPv6 to IPv4 translation 
gateway allows an IPv6-only internal node to access external IPv4-only nodes and allow replies from 
those legacy IPv4 nodes to be returned to the originating internal IPv6 node. Connections from an 
internal IPv6-only node to external IPv6-only or dual-stack nodes would be done as usual over IPv6 
(without going through the translation gateway). This would be useful for deploying IPv6-only nodes in a 
predominantly IPv4 world. An IPv4 to IPv6 gateway would allow an IPv4-only internal node to access 
external IPv6-only nodes, and allow replies from those external IPv6 nodes to be returned to the 
internal IPv4-ony node). Connections from an internal IPv4-only node to external IPv4-only nodes, or to 



172 

 

dual-stack nodes, would be done as usual over IPv4 (without going through the translation gateway). 
This would be useful for deploying IPv4-only nodes in a predominantly IPv6 world. Some of these 
mechanisms require considerable modification to (and interaction with) DNS, such as NAT-PT and NAT64 
+ DNS64. 
 
There are two broad classes of Network Address Translation between IPv4 and IPv6 – those that work at 
the IP layer, and are transparent to upper layers and protocols; and those that work at the application 
layer (i.e. Application Layer Gateways, also called Proxies). The IP layer mechanisms need only be 
implemented once, for all possible application layer protocols. Unfortunately they also have the most 
technical issues.  
 
There are quite a few Network Address Translation mechanisms between IPv4 and IPv6 currently 
proposed in IETF drafts, and all have advantages and disadvantages of various kinds. None is a “clean” 
design without any problems. One such mechanism called NAT-PT was defined in RFC 2766, “Network 
Address Translation – Protocol Translation (NAT-PT)”, February 2000. It had so many issues that it has 
already been deprecated to historic status by RFC 4966, “Reasons to Move the Network Address 
Translator – Protocol Translator (NAT-PT) to Historic Status”, July 2007. Reading RFC 4966 gives a lot of 
insight into the issues with trying to do translation between IPv4 and IPv6 at the Internet Layer. 
 
7.2.4 – Proxies (Application Layer Gateways) 
 
The other kind of translation mechanism takes place at the Application Layer. They are called proxies, 
because they do things “on behalf of” other servers, much like a stock proxy voter will vote your stock 
on your behalf. They are also called Application Layer Gateways (ALGs) because they are gateways (they 
do forwarding of traffic from one interface to another), and they work at the Application Layer of the 
TCP/IP four-layer model. They don’t have the serious problems found in IP layer translation 
mechanisms, such as dealing with IP addresses embedded in protocols (like SIP or FTP). However, there 
are some problems unique to proxies: 
 
A proxy must be written for every protocol to be translated, and often even different proxies for 
incoming and outgoing traffic, even for a given protocol (e.g. “SMTP in” and “SMTP out”). Typically each 
proxy is a considerable amount of work. Often only a handful of the most important protocol will be 
handled by proxies, while all other protocols are handled by packet filtering. 
Writing proxies involves implementing most or all of the network protocol, although sometimes in a 
simplified manner (e.g. no need to store incoming e-mail messages in a way suitable for retrieval by 
POP3 or IMAP, just for retransmission by SMTP). 
They can support SSL/TLS, but the secure connection extends only from client to proxy, and/or from 
proxy to server (not directly from client to server). This includes both encryption (the traffic will be “in 
the clear” on the proxy) and authentication (authentication is only from server to proxy, and/or proxy to 
client, not from server to client). Typically another digital certificate is required for the proxy server if it 
supports SSL/TLS (in addition to the one for the server). 
They can’t work with traffic secured in the IP layer (IPsec), without access to the keys necessary to 
decrypt the packets. 
Throughput is typically lower than with a packet filtering firewall, due to the need to process the 
protocol. Of course the security is much better – it won’t let through traffic that is not a valid 
implementation of the specific protocol, while packet filtering might let through almost anything so long 
as it uses the right port. There is typically no problem dealing with IP addresses embedded in a protocol. 
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In many cases, the proxies are not transparent, which means the client must know that it is talking not 
directly to a server, but via an intermediate proxy. Many protocols support this kind of operation, e.g. 
HTTP provides good support for an HTTP proxy. Basically, there must be a way for a client to specify not 
only the nodename of the final server, but also the address or nodename of the proxy server. In a 
browser (HTTP client), the nodename of the final server is specified as usual, and the address of the 
proxy server is specified during the browser configuration (“use a proxy, which is at address w.x.y.z”). 
When configured for proxy operation, the browser actually connects to the proxy address and relays the 
address of the final server to the proxy. The proxy then makes an ongoing connection to the final web 
server. Some protocols have no support for proxy type operation (e.g. FTP). It is possible for a firewall to 
recognize outgoing traffic over a given port, and automatically redirect it to a local proxy. 
 
Application Layer Gateways (e.g. for SIP, HTTP, and SMTP) work quite well. Basically they accept a 
connection on one interface of a gateway, and make a second “ongoing” connection (on behalf of the 
original node) via another interface of the same gateway. It is easy for the two connections to use 
different IP versions (e.g. translate IPv4 traffic to IPv6 traffic or vice versa). In some ALGs an entire 
message might be spooled onto temporary storage, (e.g. email messages) and then retransmitted later. 
In other cases, the ongoing connection would be simultaneous with the incoming connection, and 
bidirectional (e.g. with HTTP). This would correspond to a human “simultaneous translator” who hears 
one language (e.g. Chinese), translates and simultaneously speaks another language (e.g. English).  
 
Another example of this is an outgoing web proxy which could accept connections from either IPv4-only 
or IPv6-only browsers, and then make an ongoing connection to external servers using whatever version 
of IP those servers support (based on DNS queries). Again, this is a traditional (forward) web proxy, with 
the addition of IP version translation. This would allow IPv4-only or IPv6-only clients to access any 
external web server, regardless of IP version they support. Such a proxy could of course also provide any 
services normally done by an outgoing web proxy, such as caching and URL filtering. 
 
Another example of this is a dual-stack façade that would accept incoming connections from outside 
over either IPv4 or IPv6, and make an ongoing connection over IPv4 to an internal IPv4-only (or over 
IPv6 to an IPv6-only) web server. It would relay the web server’s responses using whatever version of IP 
was used in the original incoming connection to the client. This is a typical “reverse” web proxy, with the 
addition of IP version translation. This kind of translation can help you provide dual stack versions of 
your web services quickly and easily, without having to dual-stack the actual servers themselves. The 
same technique could allow you to make your e-mail services dual stack without having to modify your 
existing mail server. 
 
 
7.3 – Dual Stack  
 
Dual Stack (also known as Dual IP Layer) is defined in RFC 4213, “Basic Transition Mechanisms for IPv6 
Hosts and Routers”, October 2005. A dual-stack node should include code in the Internet Layer of its 
network stack to process both IPv4 and IPv6 packets. Typically, there is a single Link Layer that can send 
and receive either IPv4 or IPv6 packets. The Link Layer also contains both the IPv4 Address Resolution 
Protocol (ARP) and the IPv6 Neighbor Discovery (ND) protocol. The Transport Layer has only minor 
differences in the way IPv4 and IPv6 packets are handled, primarily concerning the way the TCP or UDP 
checksum is calculated (they checksum also covers the source and destination IP address from the IP 
header, which of course is different in the two IP versions). The application layer code can make calls to 
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routines in the IPv4 socket API, the IPv6 basic socket API and the IPv6 advanced socket API. IPv4 socket 
functions will access the IPv4 side of the IP layer, and IPv6 socket functions will access the IPv6 side of 
the IP layer.  
 
 

 
 

Four Layer Network Model for Dual Stack 
 
 
The node should include the ability to do conventional IPv4 node configuration (including a node 
address, default gateway, subnet mask and addresses of DNS servers, all as 32 bit IPv4 addresses). This 
configuration information can be done manually, via DHCPv4, or some combination thereof. The node 
should also include the ability to do conventional IPv6 node configuration (including a link-local IP 
address, one or more global unicast address(es), a default gateway, the subnet length and the addresses 
of DNS servers, all 128 bit IPv6 addresses). This configuration information can be done manually, 
automatically via Stateless Address Autoconfiguration, automatically by DHCPv6, or by some 
combination thereof. There is usually a way to disable either the IPv6 functionality (in which case the 
node behaves as an IPv4-only node), or the IPv4 functionality (in which case the node behaves as an 
IPv6-only node). There may or may not also be some tunneling mechanism involved. If the node is in a 
native dual-stack network no tunnel mechanism is required. If the node is in an IPv4-only, or an IPv6-
only network, it will require a tunnel mechanism to handle traffic of the other IP version. 
 
IPv4-only (and for that matter, IPv6-only) applications (client, server and peer-to-peer) will work just fine 
on a dual-stack node. They will make calls to system functions only one side of the network stack. They 
will not gain any new ability to accept or make connections over the other IP version just because they 
are running on a dual-stack node. 
 
A dual-stack client can connect to IPv4-only servers, IPv6-only servers, or dual-stack servers. A dual-stack 
server can accept connections from IPv4-only clients, IPv6-only clients, or dual-stack clients. Dual-stack 
is the most complete and flexible solution. The only issues are the additional complexity of 
implementation and deployment, and the additional memory requirements. For very small devices 
(typically clients), dual-stack may not be an option. Some critics of IPv6 claim that DSTM is not viable 
because we are running out of IPv4 addresses. What they are missing is that there are plenty of private 
IPv4 addresses for use behind NAT, and the IPv4 side of dual-stack systems can be used only for 
protocols where this is not a problem, while using their IPv6 side for those protocols which are 
incompatible with NAT (IPsec VPN, SIP, Mobile IP, P2P, etc), or can benefit from other IPv6 features 
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which are superior to their IPv4 equivalents, such as multicast and QoS (SIP, IPTV, conferencing, P2P, 
etc). Also, any application running on that node that needs to accept a connection from external nodes 
(e.g. your own web server) can use a global unicast IPv6 address (for IPv6 capable clients). If you want to 
accept connections from IPv4 clients, you would have needed a globally routable IPv4 address for that 
anyway, or would need to deploy NAT Traversal (with or without dual-stack). Dual-Stack cannot create 
more globally routable IPv4 addresses. It can however, allow you to easily make use of an almost 
unlimited number of globally routable IPv6 addresses (both unicast and multicast). 
 
A key part of a dual-stack network is a correctly configured dual-stack DNS service. It should not only be 
able to publish both A and AAAA records (as well as reverse PTR records for IPv4 and IPv6), it should also 
be able to accept queries and do zone transfers over both IPv4 and IPv6. A dual-stack network typically 
uses DHCPv4 to assign IPv4 addresses to each node, and either Stateless Address Autoconfiguration 
and/or DHCPv6 to assign IPv6 addresses to each node. A dual-stack firewall can bring in either direct 
dual-stack service (both IPv4 and IPv6 traffic) from an ISP (if available), routing both to the inside 
network; or it can bring in direct IPv4 traffic from an ISP and terminate tunneled IPv6 traffic (from a 
“virtual” ISP usually different from the IPv4 ISP) and route both IPv4 and IPv6 into the inside network. In 
either case (direct dual stack service or tunneled IPv6 with endpoint in the gateway), inside nodes 
appear to have direct dual-stack service, and require no support for tunneling. 
 
The DNS support does not require any modifications to a standard DNS server (e.g. BIND). DNS just 
needs to be able to perform its normal forward and reverse lookups with either IPv4 (A/PTR) or IPv6 
(AAAA/PTR) resource records. There is need to for the DNS server to do nonstandard mappings between 
IPv4 and IPv6 addresses as is required with most IP layer translation schemes (e.g. NAT64 + DNS64). 
 
Migrating IPv4-only client or server applications to IPv6-only is quite simple. There is essentially a one to 
one mapping of function calls from the IPv4 socket API to similar ones in the IPv6 basic socket API. Of 
course, more storage is required for each IP address in data structures (4 bytes for IPv4 addresses, 16 
bytes for IPv6 addresses).  
 
Modifying either IPv4-only clients or IPv4-only servers to dual-stack operation is somewhat more 
complicated. A dual-stack client must be modified to retrieve multiple addresses (IPv4 and/or IPv6) from 
DNS, and try connections sequentially to the returned address list until a connection is accepted. The 
default (assuming IPv6 connectivity is available) is to attempt connections over IPv6 first. If DNS 
advertises an IPv6 address, and the node supports IPv6, but for some reason the client is unable to 
connect over IPv6 (e.g. tunnel down), there will be a 30 second timeout then a fallback to IPv4. A dual-
stack server must listen for connections on either IPv4 or IPv6, and process connections from either. It is 
also possible to deploy two copies of each server, one being IPv4-only, and the other IPv6-only. This 
might involve cross process file locking on any shared resource, such as a message store. Either 
approach to providing dual-stack servers will work fine, and the user experience will be the same. 
Conditional compilation could be used to have a single source code tree create both an IPv4-only and an 
IPv6-only executable (depending on setting of system variables at compilation time). For most server 
designs (process per connection or thread per connection), the split model (an IPv4-only server and an 
IPv6-only server) would roughly double the memory footprint compared to a single dual-stack server. 
 
Most open source servers today have good support for dual-stack operation. These include the Apache 
web server, Postfix SMTP server, Dovecot IMAP/POP3 mail access servers, etc. If you are a developer 
and want to see examples of how to deploy dual-stack servers, there are numerous examples available 



176 

 

in open source. Most open source client software also has good support for IPv6 and dual-stack. These 
include the Firefox web browser, Thunderbird e-mail client, etc. The open source community has done 
an excellent job of supporting the migration to IPv6. Both the original IPv4-only socket API and the 
newer IPv6 socket APIs are readily available on all UNIX and UNIX-like platforms. The documentation for 
the newer IPv6 socket APIs are in RFC 3493, “Basic Socket Interface Extensions for IPv6” and RFC 3542, 
“Advanced Sockets Application Program Interface (API) for IPv6”. There is also RFC 5014, “IPv6 Socket 
API for Source Address Selection”, and RFC 4584, “Extension to Sockets API for Mobile IPv6”. 
 
Virtually all Microsoft server products (since 2007) have had good support for dual-stack operation. 
These include Windows Server 2008 (and all of its components, such as DNS, file and printer sharing, 
etc); Exchange Server 2007; and many others. Their client operating systems have had good support for 
IPv6 since Vista. For Microsoft developers, both the original IPv4-only socket API (WinSock) and the new 
IPv6 socket APIs (basic and advanced) are available as part of the standard Microsoft developer libraries. 
 
 
7.3.1 – Dual-Stack Lite 
 
The IETF Softwires Working Group has come up with a variant on the basic Dual-Stack network design, 
which is described in draft-ietf-softwire-dual-stack-lite-04, “Dual-Stack Lite Broadband Deployments 
Following IPv4 Exhaustion”. Clients will still support both IPv4 and IPv6, but the service from the ISP to 
the customer will be IPv6-only, with IPv4 service tunneled over the IPv6. The addresses provided to the 
customer will be RFC 1918 private addresses, provided by a giant Large Scale NAT (LSN) at the ISP. The 
NAT involved actually uses the customer’s IPv6 address to tag the private IPv4 addresses used by the 
client, which would allow multiple ISP clients to use the same private address range (e.g. all of them 
could use 10.0.0.0/8, and the LSN would keep each organization’s addresses separate based on their 
unique IPv6 address).  
 
IPv6-only or Dual-Stack nodes at the client would be able to connect to any IPv6 node in the world 
directly, via the ISPs IPv6 service. IPv4-only or Dual-Stack nodes at the client would be able to connect to 
any IPv4 node in the outside world via IPv4 tunneled over IPv6, with addresses from the ISP’s Large Scale 
NAT. There is no 6to4 translation that would allow an IPv6-only node to connect to external IPv4 nodes, 
or 4to6 translation that would allow an IPv4-only node to connect to external IPv6 nodes. Any internal 
node that needs to connect to external IPv4 nodes should be configured to support dual-stack. 
 
The way this differs from basic Dual-Stack operation is that there is no direct IPv4 service provided, and 
the IPv4 addresses used at the client are private, and managed by infrastructure at the ISP. This allows 
the ISP to share a relatively small number of precious real IPv4 addresses among a large number of 
customers, and also allows the ISP to run only a single IP family of “direct service” to the customer 
(which happens to be IPv6). A major advantage of DS-Lite is that no 6to4 or 4to6 translation is required. 
 
This will require a firmware upgrade (or replacement) of the Customer Premise Equipment (CPE), which 
is typically a DSL or cable modem, with embedded router and NAT. 
 
This is the “IPv6 service” being trialed by Comcast in the United States as this is being written.  
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The ISC (who also supply the BIND DNS server and dhcpd DHCPv4 server) have created a freeware 
implementation of the ISP side facilities to support DS-Lite, called AFTR (Address Family Transition 
Router). This includes IPv4 over IPv6 tunneling, DHCPv4, DHCPv6 and some other pieces. 
 
The CPE device for DS-Lite is called B4 (Basic Bridging BroadBand Element). There is an open source 
implementation of this for the Linksys WRT-54GL. 
 
 
7.4 – Tunneling 
 
If tunneled service is brought into the network by a gateway device (typically the gateway router or 
firewall), which contains the tunnel endpoint, the internal network is a native dual-stack network from 
the viewpoint of all internal nodes. No internal node needs to have support for any tunneling 
mechanism. If at some point, the tunneled service is replaced with direct service (both IPv4 and IPv6 
service direct from your ISP) a minor reconfiguration at the gateway is all that is required. Internal nodes 
will probably not require any reconfiguration at all. They will typically have a new IPv6 prefix (unless you 
were getting tunneled service from your ISP), so you will likely have to update all forward and reverse 
address references in your DNS server (only for IPv6 addresses), to reflect the new IPv6 prefix. If your 
DNS server supports instant prefix renumbering like SolidDNS, this is a quick, painless process. If you are 
using DHCPv6 in stateful mode (where it assigns IP addresses) in conjunction with dynamic DNS 
registration, even DNS changes due to change of IPv6 prefix may happen automatically. 
 
A tunnel mechanism has both a server side and a client side. The server side typically can accept one or 
more connections from tunnel clients. It is also commonly called a Tunnel Broker. A tunnel client 
typically makes connections to a single tunnel server. Some such connections (e.g. with 6in4) are not 
authenticated (although the server can typically be restricted to accepting connections only from 
specific IP addresses or address ranges). Some such connections (e.g. gogonet’s TSP) include 
authentication of the client to the server, before the tunnel will begin operation. Some connections (e.g. 
6in4) require a globally routable IPv4 address on the client (although this can be the same address as the 
hide-mode NAT address). Other tunnel clients will work behind NAT, even with a private address. These 
include a NAT traversal mechanism in the client, and typically all tunneled packets are carried over UDP. 
Once a tunnel is created, it is bi-directional. Packets can be sent either upstream or downstream. From a 
hop count perspective, the tunnel counts as one hop, no matter how many hops the tunneled packets 
traverse. 
 
Typical Product Support for Tunneling: InfoWeapons’ SolidWall Dual Stack Firewall 
 
As an example of a typical product that includes support for tunneling, InfoWeapons has a dual stack 
firewall called SolidWall. On the IPv4 side, it includes typical firewall capabilities including routing, 
filtering by port and address, stateful packet inspection and various forms of NAPT (hide mode, BINAT or 
1:1 and port forwarding). On the IPv6 side, it includes all of that (except for NAPT), plus a Router 
Advertisement Daemon (to enable Stateless Address Autoconfiguration) and 6in4 server and client 
mode. You could use the 6in4 client mode to bring in IPv6 tunneled service from any 6in4 virtual ISP 
(e.g. Hurricane Electric). You could create your own (small) IPv6 virtual ISP using Solidwall’s 6in4 tunnel 
server mode. For example, you could provide tunneled IPv6 service from your HQ or collocation facility 
to various branches, using the 6in4 tunnel server at HQ and the 6in4 tunnel clients at each branch. You 
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can carve off any number of “/64” subnets into each branch office. For example, you could split a “/48” 
block into sixteen “/52” blocks, and route one “/52” block into each branch office.  
 
Because the client mode tunnel endpoint is located inside a firewall node, incoming IPv6 packets from 
the tunnel can be filtered and routed into any inside network(s). Outgoing IPv6 packets from any 
internal network can be filtered and routed out the tunnel to the outside world (via a remote tunnel 
server). 
 
The server mode tunnel endpoint is also located inside a firewall node, so the firewall’s routing 
capabilities allow you to easily route any block of addresses from the outside world into any tunnel (and 
hence to branch offices), and outgoing packets (from tunnels coming from branch offices) to the outside 
world. Currently there is no support for OSPFv3 or BGP4+, so you would need to relay outgoing IPv6 
traffic onwards via an ISP (or virtual ISP) that can do further routing. 
 
As an example, we have one SolidWall at our colocation facility in Atlanta, Georgia. We split our “/48” 
block (2001:418:5403::/48) into 16 “/52” blocks. We use subnet 2001:418:5403:0::/52 locally in the 
collocation facility. Our website (www.infoweapons.com) is hosted there along with our main DNS 
servers (on a pair of our own SolidDNS appliances). We route subnet 2001:418:5403:2000::/52 to our 
office in Cebu, and subnet 2001:418:5403:3000::/52 to my home in Cebu. The client side of each of 
these tunnels is another SolidWall appliance. In each case, it brings IPv4 service from a local ISP into the 
network, with IPv6 from our colo tunneled over it. Incoming IPv6 is “de-tunneled” inside the firewall and 
routed into the internal network alongside the filtered IPv4. Outgoing IPv6 from each network is “en-
tunneled” through the local SolidWall, and it comes out at the SolidWall at the colo, where it is routed 
onwards via our direct dual-stack service from NTT America. It sounds complicated, but in reality it only 
takes a few minutes to each tunnel up, using a simple point-and-click GUI. 
 
Because the tunnel mechanism used (6in4) is an IETF standard, SolidWall’s tunnels will interoperate with 
server or client mode 6in4 tunnel endpoints on any other vendor’s products or even on homegrown 
routers built from open source platforms such as FreeBSD, OpenBSD or Linux.  
 
In future releases we plan to add several other kinds of tunneling to SolidWall (probably 6to4, TSP and 
Dual-Stack Lite). 
 
 
7.4.1 – 6in4 Tunneling 
 
RFC 4213 (in addition to specification for Dual Stack), specifies 6in4 tunneling (unfortunately they use 
the term “6over4” when they mean “6in4”). Technically, 6in4 is a tunneling mechanism. 6over4 is a 
transition mechanism that uses 6in4 tunneling to create a virtual IPv6 link over an IPv4 multicast 
infrastructure (see RFC 2529). This book will use the term 6in4 unless we are specifically talking about 
6in4 tunnels over IPv4 multicast. 6in4 is also sometimes referred to as “Protocol 41” tunneling. 6in4 
tunneling requires both ends of the tunnel to have globally routable IPv4 addresses (neither tunnel 
endpoint can be behind NAT). It is possible for a firewall that is using a globally routable IPv4 address for 
HIDE mode NAT (with multiple internal nodes hidden behind it), to use that same address as one 
endpoint of a 6in4 tunnel. 
 
6in4 Encapsulation 
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This process is done to “push packets into the tunnel” for packets going from either end of the tunnel to 
the other. The basic idea is to prepend a new IPv4 packet header to a complete IPv6 packet (which itself 
consists of the basic IPv6 header, zero or more extension headers, a TCP or UDP header, and a payload), 
and treat the entire IPv6 packet as a “black box” payload for the IPv4 packet.  
 

The encapsulation of an IPv6 datagram in IPv4 for 6in4 tunneling is shown below: 
 

                                             +-------------+ 

                                             |    IPv4     | 

                                             |   Header    | 

             +-------------+                 +-------------+ 

             |    IPv6     |                 |    IPv6     | 

             |   Header    |                 |   Header    | 

             +-------------+                 +-------------+ 

             |  Transport  |                 |  Transport  | 

             |   Layer     |      ===>       |   Layer     | 

             |   Header    |                 |   Header    | 

             +-------------+                 +-------------+ 

             |             |                 |             | 

             ~    Data     ~                 ~    Data     ~ 

             |             |                 |             | 

             +-------------+                 +-------------+ 

 

                      Encapsulating IPv6 in IPv4 

 

 

The new IPv4 packet header is constructed as follows (from the RFC): 
 
IP version: 
 

4 (the encapsulating packet is IPv4) 
 
IP Header Length:  
 

5 (in 32 bit words, so 20 bytes, and no IPv4 options are used in the encapsulating header) 
 
Type of Service: 
 

0 unless otherwise specified (see RFC 2983 and RFC 3168 for details) 
 
Total Length: 
 

IPv6 payload length plus IPv6 header length (40) plus IPv4 header length (20), so IPv6 payload 
length + 60 
 

Identification: 
 

Generated uniquely as for any IPv4 packet 
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Flags: 
 

DF (Don’t Fragment) flag should be set as specified in section 3.2 of RFC 4213 
MF (More Fragments) flag set as necessary if fragmenting 

 
Fragment Offset: 
 

Set as necessary if fragmenting 
 

Time to Live (TTL): 
 

Set as described in Section 3.3 of RFC 4213 
 

Protocol: 
 

41 – this is the defined payload type for IPv6 tunneled over IPv4, and is used regardless of 
whether the IPv6 transport is UDP or TCP 
 

Header Checksum: 
 

Calculated as usual for an IPv4 packet header 
 

Source Address: 
 

An IPv4 address of the encapsulator: either configured by the administrator, or an address of 
the outgoing interface 
 

Destination Address: 
 

IPv4 address of the tunnel endpoint (that is, the client side of the tunnel) 
 

 
6in4 Decapsulation 
 
This is done for all packets received over the tunnel from the other end. The basic idea is to strip the 
outer (IPv4) packet header off (and discard it), then handle what is left (the original IPv6 packet) as 
native IPv6 traffic. 
 
From the RFC: When a dual stack node receives an IPv4 datagram that is addressed to one of its own 
IPv4 addresses (or a joined multicast group address), which has a protocol field of 41 (tunneled IPv6), 
the packet must be verified to belong to a configured tunnel interface (according to source/destination 
addresses), reassembled (if it was fragmented), have the IPv4 header removed, and then the resulting 
IPv6 datagram is submitted to the IPv6 layer on the node for further processing. 

 

The decapsulation process for 6over4 tunneling is shown below: 
 

            +-------------+ 
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            |    IPv4     | 

            |   Header    | 

            +-------------+                 +-------------+ 

            |    IPv6     |                 |    IPv6     | 

            |   Header    |                 |   Header    | 

            +-------------+                 +-------------+ 

            |  Transport  |                 |  Transport  | 

            |   Layer     |      ===>       |   Layer     | 

            |   Header    |                 |   Header    | 

            +-------------+                 +-------------+ 

            |             |                 |             | 

            ~    Data     ~                 ~    Data     ~ 

            |             |                 |             | 

            +-------------+                 +-------------+ 

 

                    Decapsulating IPv6 from IPv4 

 

According to RFC 4213, section 3.2, the MTU of the tunnel must be between 1280 and 1480 bytes 
(inclusive), but should be 1280 bytes. Section 3.3 specifies that the tunnel counts as a single hop to IPv6, 
regardless of how many hops the underlying IPv4 packet traverses. The actual TTL value in the outer IP 
header should be set as for any IPv4 packet (see RFC 3232 and RFC 4087).  
 
RFC 4213 section 3.4 specifies how to handle errors that happen while the encapsulated packet is inside 
the tunnel. Unfortunately older routers may not return enough of the packet to include both source and 
destination IPv6 addresses of the encapsulated packet, so it may not be possible to construct a correct 
ICMPv6 error message. Newer routers typically include enough of the failed packet for correct ICMPv6 
error message creation. 
 
 
7.4.2 – 6over4 Tunneling 
 
6over4 tunneling is defined in RFC 2529, “Transmission of IPv6 over IPv4 Domains without Explicit 
Tunnels”. It is a transition mechanism that uses 6in4 tunneling over an IPv4 multicast capable network. 
The term 6over4 is sometimes confusingly used for 6in4 tunneling. Due to the requirement for IPv4 
multicast, which is very difficult to deploy, 6over4 is not commonly used. 
 
 
7.4.3 – 6to4 Tunneling 
 
6to4 tunneling is described in RFCs 3056, 3068, 3964 and 5158. It is a transition mechanism that 
provides tunneled IPv6 over IPv4 without explicitly configured tunnels. With the original 6to4 
mechanism, the IPv4 addresses involved must be valid globally routable IPv4 addresses (not behind 
NAT). Teredo is a variant of 6to4 tunneling that will work even behind NAT. 
 
6to4 does not provide general translation to IPv4 addresses for interoperation between IPv6 hosts and 
IPv4 hosts. It uses automatically created tunnels over IPv4 to facilitate communication between any 
number of IPv6 hosts. 
 
A “6to4 Host” is a regular IPv6 host that also has at least one 6to4 address assigned to it. 
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A “6to4 Router” is a regular IPv6 router that includes a 6to4 pseudo interface. It is normally a border 
router between an IPv6 site and a wide-area IPv4 network.  
 
A “6to4 Relay Router”, which is a 6to4 router which is also configured to support transit routing 
between 6to4 addresses and native IPv6 addresses.  
 
Without 6to4 Relay Routers, you can communicate with other nodes that use 6to4 tunneling, over IPv6 
(even though your ISP does not yet support IPv6).  To communicate with IPv6 users that are not using 
6to4, you need to relay your traffic through a 6to4 relay router. You can create your own (which must 
have both a 6to4 pseudo interface, and real (not 6to4) IPv6 connectivity to the IPv6 Internet. 
 
A 6to4 router will send an encapsulated packet directly over IPv4 if the first 16 bits of an IPv6 
destination address are 2002, using the next 32 bits as the IPv4 destination (which must be another 6to4 
node that will unpack the IPv6 packet being sent and use it or relay it to other IPv6 hosts). For all other 
IPv6 destination addresses, a 6to4 router will forward the packet to the IPv6 address of a well-known 
relay server that has access to native IPv6 (or simply send it to the IPv6 anycast address 
2002:c058:6301::/128, which will send it to the nearest 6to4 relay router). 
 
For details on how to configure a FreeBSD node with 6to4 tunneling, see 
 
 http://www.kfu.com/~nsayer/6to4 
 
An IPv6 address for use with 6to4 tunneling looks like the following: 
 
     | 3 |  13  |    32     |   16   |          64 bits               | 

     +---+------+-----------+--------+--------------------------------+ 

     |FP | TLA  | V4ADDR    | SLA ID |         Interface ID           | 

     |001|0x0002|           |        |                                | 

     +---+------+-----------+--------+--------------------------------+ 

 
Essentially the IPv6 prefix for all 6to4 addresses is 2002:V4ADDR::/48. 
 
RFC 3056 defines a 6to4 pseudo-interface as follows: 
 

“6to4 encapsulation of IPv6 packets inside IPv4 packets occurs at a point that is locally 
equivalent to an IPv6 interface, with the link layer being the IPv4 unicast network. This point is 
referred to as the pseudo-interface. Some implementers may treat it exactly like any other 
interface, and others may treat it like a tunnel endpoint.” 

 
 
7.4.4 – Teredo 
 
Teredo is one extension of basic 6to4 tunneling. It adds encapsulation over UDP datagrams, and uses a 
simplified version of STUN NAT Traversal, allowing a Teredo client to be behind NAT. It is defined in RFC 
4380, “Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs)”. The name 
“Teredo” is part of the Latin name for a little worm that bores holes through wooden ship hulls. This 
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gives you a pretty good idea of what the Teredo protocol does to your firewall. Teredo is installed and 
enabled by default in Windows Vista and Windows 7. It is possible to disable it, but this is not easy.  
 
There is an open source Teredo client for Linux, BSD and Mac OS X called Miredo. It can act as a client, 
relay and server. 
 
There are publically available Teredo “relay routers” that allow any node with Teredo to access the IPv6 
Internet. Microsoft makes several very large ones available for use from Windows nodes. Windows 
nodes are preconfigured to use these relay servers. Unlike 6to4 and some other tunnel mechanisms, 
Teredo can only provide a single “/128” IPv6 address per tunnel endpoint. 
 
Teredo uses a different IPv6 address block than basic 6to4 tunneling. The rest of the Teredo address is 
defined differently as well. 
 

 Bits 0-31 contain the Teredo prefix, which is 2001:0000::/32. 

 Bits 32-63 contain the IPv4 address of the Teredo Server used. 

 Bits 64-79 contain some flags. Currently only bit 64 is used. If set to 1, the client is behind a cone 
NAT, otherwise it is 0.  More of these flag bits are used in Vista, Windows 7 and Windows Server 
2008. 

 Bits 80-95 contain the obfuscated UDP port number (port number that is mapped by NAT, with 
all bits inverted) 

 Bits 96-127 contain the obfuscated IPv4 address of the node (public IPv4 address of the NAT 
with all bits inverted) 

 
As an example, a Teredo address might be 2001::4136:e378:8000:63bf:3fff:fdd2, which broken into 
fields is: 
 

 Bits 0-31: 2001:0000 – The Teredo prefix 

 Bits 32-63: 4136:e378 – IPv4 address 65.54.227.120 in hexadecimal 

 Bits 64-79: 8000 – Cone mode NAT 

 Bits 80-95: 63bf – Obfuscated port number 40000 

 Bits 96-127: 3fff:fdd2 – Obfuscated public IPv4 address of the node (192.0.2.45) 
 
Public Teredo servers can be located on the following website: 
 
 http://www.bgpmon.net/teredo.php 
 
Hurricane Electric, as of Q1 2009, had deployed 14 public Teredo relays (via anycast), in Seattle 
Washington, Fremont California, Los Angeles California, Chicago Illinois, Dallas Texas, Toronto Ontario, 
New York New York, Ashburn Virgina, Miami Florida, London England, Paris France, Amsterdam 
Netherlands, Frankfurt Germany and Hong Kong SAR.  
 
 
7.4.5 – 6rd – IPv6 Rapid Deployment 
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6rd is another extension of 6to4 tunneling, that adds reliable routing. Normal 6to4 tunnels use the 
standard 2002://16 prefix, and in theory scale to the entire world. Unfortunately, there is no way to 
control who can connect to 6to4 public servers, and there is no incentive to provide quality service. Also 
there is no guarantee that any 6to4 node will be reachable. The same is true of Teredo. 
 
6rd instead works only within the confines of a single ISP, and instead of the 2000://16 prefix, each ISP 
uses a prefix that they own and control and runs the Relay Router. They can insure quality service and 
reachability of all nodes within their network. 
 
6rd was deployed by a French ISP called “Free” (in spite of the name, this is a commercial ISP). This was 
done in 5 weeks starting in December 2007. This gave France the second highest IPv6 penetration in the 
world, 95% of which was via Free’s 6rd. RFC 5569 discusses Free’s 6rd deployment. The current Internet 
Draft that defines 6rd (draft-ietf-softwire-ipv6-6rd-08, “IPv6 via IPv4 Service Provider Networks ‘6rd’”, 
2010-03-23) should be approved soon. Meanwhile you can read the draft. 
 
In January 2010, Comcast (a large U.S. ISP) announced plans to do a trial deployment of IPv6 using 6rd. 
Softbank (a large Japanese ISP) also has announced that they will roll out IPv6 using 6rd. 
 
 
7.4.6 – Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) 
 
ISATAP is a transition mechanism that allows transmission of IPv6 packets between dual-stack nodes on 
top of an IPv4 network. It is similar to 6over4, but it uses IPv4 as a virtual Non-Broadcast Multiple-Access 
(NBMA) network Link Layer, and does not require IPv4 multicast (which 6over4 does require). It is 
discussed in RFC 5214, “Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)”. 
 
ISATAP specifies a way to generate a link-local IPv6 address from an IPv4 address, plus a mechanism for 
performing Neighbor Discovery on top of IPv4.  
 
The generated link local address is created by appending the 32 bit IPv4 address onto the 96 bit prefix 
fe80:0:0:0:0:5efe::. For example, the IPv4 address 192.0.2.143 in hexadecimal is c000028f. Therefore the 
corresponding ISATAP link-local address is fe80::5efe:c000:28f.  
 
The Link Layer address for ISATAP is not a MAC address, but an IPv4 address (remember IPv4 is used as a 
virtual Link Layer). Since the IPv4 address is just the low 32 bits of the ISATAP address, mapping onto the 
“Link Layer” address simply involves extracting the low 32 bits (ND is not required). However, router 
discovery is more difficult without multicast. ISATAP hosts are configured with a potential routers list 
(PRL). Each of the routers on this list are probed by an ICMPv6 Router Discovery message, to determine 
which of them are functioning and to then obtain the list of on-link IPv6 prefixes that can be used to 
create global unicast IPv6 addresses. 
 
Current implementations create their PRL by querying the DNS. DHCPv4 is used to determine the local 
domain, then a DNS query is done for isatap.<localdomainame>. For example, if the local domain is 
demo.com, it would do a DNS query for isatap.demo.com.  
 
ISATAP avoids circular references by only querying DNS over IPv4, but it still a lower-layer protocol that 
is using a higher-layer function (DNS). This is a violation of network design principles.  
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ISATAP is implemented in Windows XP, Windows Vista, Windows 7, Windows Mobile, and Linux (since 
Kernel 2.6.25). It is not currently implemented in *BSD due to a potential patent issue. 
 
 
7.4.7 – Tunnel Setup Protocol (TSP) 
 
TSP is defined in RFC 5572, and was created by Marc Blanchet, author of “Migrating to IPv6” (and at the 
time CTO of Hexago). Hexago sold an IPv6 Tunnel Broker appliance that implemented TSP. It is similar in 
certain respects to 6in4 tunneling, but works even behind NAT, and includes client authentication. 
Hexago offered free TSP clients for most platforms and free IPv6 tunneled service to anyone through 
their own Freenet6 service. There was a management buyout a few years ago, and now Hexago is 
known as gogo6. They still offer the same TSP based products and free tunneled IPv6 service. They now 
run gogoNET, which is a social networking site built around IPv6 (with 17,000 members as of April 2010). 
 
gogo6’s free tunneled service is one of the best ways to get started in IPv6. You simply download their 
free client for whatever platform you use, install it, sign up for a free account, and connect. You can 
obtain a single (“/128”) IPv6 address even when you are on the road (e.g. in a hotel). You can even 
obtain a “/56” block on a router to provide IPv6 connectivity to an entire network. Service is on a “best 
effort” basis (no guarantees). They also have a DS-Lite trial service for tunneled IPv4 over IPv6, and a 
DSTM (Dual-Stack Transition Method) service to allow people to access IPv4-only Internet services from 
an IPv6-only network. The IPv4 address obtained in private, and all users of Freenet6’s DSTM share a 
single block of public IPv4 addresses. 
 
TSP is actually a framework that can do any of the following: 
 

 User authentication, with various mechanisms include SASL 

 NAT discovery 

 Encapsulation of IPv6 over IPv4 (RFC 4213, 6in4) 

 Encapsulation of IPv4 over IPv6 (RFC 2473, 4in6) 

 Encapsulation of IPv6 over UDP-IPv4 tunnels for NAT traversal 

 IP  address assignment for the tunnel endpoints 

 DNS registration of the IP endpoint address (AAAA record) 
 
Once a user is authenticated, the client performs NAT discovery. The client sends a TSP message over 
UDP, containing its tunnel request information (e.g. source IPv4 address) to the tunnel server. The TSP 
server compares the IPv4 source address of this datagram with the address in the datagram payload. If 
they differ, then at least one NAT was traversed, and the tunnel will use encapsulation over UDP with 
NAT traversal. A keep-alive mechanism is also selected. If the addresses match (no NAT detected), then 
simple 6in4 (RFC 4213) tunneling is selected. If the datagram contains an IPv6 address, and the source 
address of the datagram is IPv6, then 4in6 tunneling is selected. 
 
Features of TSP: 
 

 The created tunnel is static, which is more secure than automated tunnels (per RFC 3964).  

 The IPv6 address and prefix are stable, and not dependent on the underlying IPv4 address 
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 Prefix assignment is supported 

 Automated NAT discovery and negotiation of optimal NAT traversal scheme 

 TSP uses TCP on port 3653 or UDPv4 on port 3653 
 
 
           tunnel                              tunnel 

           client                              broker 

             +|         Send version              + 

             ||---------------------------------> || 

             ||         Send capabilities         || 

             ||<--------------------------------- +| Authentication 

             ||         SASL authentication       || phase 

             ||<--------------------------------> || 

    TSP      ||         Authentication OK         || 

    signaling||<--------------------------------- + 

             ||         Tunnel request            || Command 

             ||---------------------------------> || phase 

             ||         Tunnel response           + 

             ||<--------------------------------- || Response 

             ||         Tunnel acknowledge        || phase 

             ||---------------------------------> + 

             +|                                   | 

             ||         Tunnel established        | 

    Data     ||===================================| 

    phase    ||                                   | 

             +|           (keep-alive)            | 

 

Tunnel Setup Protocol Exchange 
 
 
   C:VERSION=2.0.0 CR LF 

   S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN 

     AUTH=DIGEST-MD5 CR LF 

   C:AUTHENTICATE ANONYMOUS CR LF 

   S:200 Success CR LF 

 

Successful Anonymous Authentication 
 

 

   C:VERSION=2.0.0 CR LF 

   S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN 

     AUTH=DIGEST-MD5 CR LF 

   C:AUTHENTICATE DIGEST-MD5 CR LF 

   S:cmVhbG09aGV4b3Msbm9uY2U9MTExMzkwODk2OCxxb3A9YXV0aCxhbGdvcml0aG09bWQ 

     1LXNlc3MsY2hhcnNldD11dGY4 

   C:Y2hhcnNldD11dGY4LHVzZXJuYW1lPSJ1c2VybmFtZTEiLHJlYWxtPSJoZXhvcyIsbm9 

     uY2U9IjExMTM5MDg5NjgiLG5jPTAwMDAwMDAxLGNub25jZT0iMTExMzkyMzMxMSIsZG 

     lnZXN0LXVyaT0idHNwL2hleG9zIixyZXNwb25zZT1mOGU0MmIzYzUwYzU5NzcxODUzZ 

     jYyNzRmY2ZmZDFjYSxxb3A9YXV0aA== 

   S:cnNwYXV0aD03MGQ1Y2FiYzkyMzU1NjhiZTM4MGJhMmM5MDczODFmZQ== 

   S:200 Success CR LF 

 

Successful Digest-MD5 Authentication 
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         -- UDP session established -- 

         C:VERSION=2.0.0 CR LF 

         S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS 

           AUTH=PLAIN AUTH=DIGEST-MD5 CR LF 

         C:AUTHENTICATE ANONYMOUS CR LF 

         S:200 Success CR LF 

 

         C:Content-length: 205 CR LF 

         <tunnel action="create" type="v6udpv4"> 

          <client> 

           <address type="ipv4">192.0.2.135</address> 

         <keepalive interval="30"></keepalive> 

         </client> 

         </tunnel> CR LF 

 

         S:Content-length: 501 CR LF 

         200 Success CR LF 

         <tunnel action="info" type="v6udpv4" lifetime="604800"> 

           <server> 

             <address type="ipv4">192.0.2.115</address> 

             <address type="ipv6"> 

             2001:db8:8000:0000:0000:0000:0000:38b2 

             </address> 

           </server> 

           <client> 

             <address type="ipv4">192.0.2.135</address> 

             <address type="ipv6"> 

             2001:db8:8000:0000:0000:0000:0000:38b3 

             </address> 

             <keepalive interval="30"> 

               <address type="ipv6"> 

               2001:db8:8000:0000:0000:0000:0000:38b2 

               </address> 

             </keepalive> 

           </client> 

         </tunnel> CR LF 

 

         C:Content-length: 35 CR LF 

         <tunnel action="accept"></tunnel> CR LF 

 

Example of a Command/Response Sequence 
  

 

            -- Successful TCP Connection -- 

             C:VERSION=1.0 CR LF 

             S:CAPABILITY TUNNEL=V4V6 AUTH=DIGEST-MD5 AUTH=ANONYMOUS 

               CR LF 

             C:AUTHENTICATE ANONYMOUS CR LF 

             S:OK Authentication successful CR LF 

             C:Content-length: 228 CR LF 

               <tunnel action="create" type="v4v6"> 

                  <client> 

                      <address type="ipv6"> 

                      2001:db8:0c18:ffff:0000:0000:0000:0001 
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                      </address> 

                  </client> 

               </tunnel> CR LF 

             S: Content-length: 370 CR LF 

                200 OK CR LF 

                <tunnel action="info" type="v4v6" lifetime="1440"> 

                  <server> 

                     <address type="ipv4" length="30"> 

                     192.0.2.2 

                     </address> 

                     <address type="ipv6"> 

                     2001:db8:c18:ffff:0000:0000:0000:0002 

                     </address> 

                  </server> 

                  <client> 

                     <address type="ipv4" length="30"> 

                     192.0.2.1 

                     </address> 

                     <address type="ipv6"> 

                     2001:db8:c18:ffff::0000:0000:0000:0001 

                     </address> 

                  </client> 

                </tunnel> CR LF 

 

IPv4 over IPv6 Tunnel Request and Response 
 

 
7.4.8 – Softwires 
 
The IETF has a very active Softwires working group. Essentially they are trying to create standards for 
tunneling IPv6 over IPv4 networks and for tunneling IPv4 over IPv6 networks. There are two basic 
models for this, one is called Hub and Spoke. This is similar to the way that airlines have a few large hub 
airports and many spokes or local flights radiating from those hubs to smaller communities nearby. For 
example, Atlanta International Airport is a hub for the entire Southeastern United States. If you fly in or 
out of that region, you will likely interchange in Atlanta. There are several schemes that vary in exactly 
what part of the network path the softwire is deployed: 
 

 from ISP to Customer Modem/Router 

 from ISP via Customer Modem/Router to an inside softwire router 

 from ISP via Customer Modem/Router to an end-user node 
 
All the components necessary to deploy the various schemes are widely available, including; 
 

 LNS: large ISP based L2TP Network Server 

 Dual AF CPE: Customer Premise Equipment Modem/Router with support for L2TPv2 softwires 

 Dual AF Router: Customer Premise dual-stack router with support for L2TPv2 softwires 

 Dual AF Host: Client software for end-user nodes with support for L2TPv2 softwires 
 
In the above, “Dual AF” means Dual Address Family, in other words, IPv4 + IPv6, or dual stack. 
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The other softwire architecture is called Mesh. This involves a number of peer nodes, with multiple 
connections between them. If all nodes are connected to all other nodes, that would be a fully meshed 
network.  
 
The term softwire refers to a tunneled link between two or more nodes. In early RFCs related to this 
technology, sometimes the term pseudowire is used instead. Softwires are assumed to be long-lived, 
and the setup time is expected to be a very small fraction of the total time required for the startup of 
the Customer Premise Equipment / Address Family Border Router. The goal is to make cost effective use 
of existing facilities and equipment where possible.  
 
Current softwire solutions are mostly based on L2TPv2, which is defined in RFC 2661, “Layer Two 
Tunneling Protocol ‘L2TP’”, August 1999. L2TPv1 was defined in RFC 2341, “Cisco Layer Two Forwarding 
(Protocol) ‘L2F’”, May 1998. L2TPv2 is layered on PPP, which is defined in RFC 1661, “The Point-to-Point 
Protocol (PPP)”, July 1994. All L2TPv2 connections use UDP encapsulation. There are already some very 
large deployments of softwires on LT2Pv2 in ISPs today. L2TPv2 meets all IPv6 over IPv4 softwire 
requirements today. It is 99% ready for IPv4 over IPv6 softwire today. 
 
Future softwire solutions will be based on L2TPv3, which is defined in RFC 3931, “Layer Two Tunneling 
Protocol – Version 3 (L2TPv3)”, March 2005. L2TPv3 can be layered on PPP, but in v3 it is optional (it can 
layer directly on IP). UDP encapsulation is also optional in v3. UDP encapsulation is useful for NAT 
traversal, but it increases overhead and lowers throughput and reliability. If no NAT needs to be 
traversed, turning off the UDP encapsulation can lower overhead. Session ID and Control Connection IDs 
are 32 bits (vs. 16 in L2TPv2). L2TPv3 also provides better user authentication, and data channel security 
through use of optional cookies. An L2TPv3 cookie is an up to 64 bit cryptographically generated random 
value, included in every packet. L2TPv3 is close to meeting all softwires requirements. 
 

 RFC 4935, “Softwire Problem Statement”, July 2007 (Informational) 

 RFC 5512, “The BGP Encapsulation Subsequent Address Family Indicator (SAFI) and the BGP 
Tunnel Encapsulation Attribute”, April 2009 (Standards Track) 

 RFC 5543, “BGP Traffic Engineering Attribute”, May 2009 (Standards Track) 

 RFC 5549, “Advertising IPv4 Network Layer Reachability Information with an IPv6 Next Hop”, 
May 2009 (Standards Track) 

 RFC 5565, “Softwire Mesh Network”, June 2009 (Standards Track) 

 RFC 5566, “BGP IPsec Tunnel Encapsulation Attribute”, June 2009 (Standards Track) 

 RFC 5571, “Softwire Hub and Spoke Deployment Framework with Layer Two Tunneling 
Protocol Version 2 (L2TPv2)”, June 2009 (Standards Track) 

 RFC 5619, “Softwire Security Analysis and Requirements”, August 2009 (Standards Track) 

 RFC 5640, “Load-Balancing for Mesh Softwires”, August 2009 (Standards Track) 
 
There are a lot of IETF drafts related to softwires (this is a hot area of Internet development): 
 

 draft-arifumi-softwire-dslite-global-addr-00, “Global IPv4 Address Configuration for DS-Lite”, 
2010-03-01 

 draft-boucadir-softwire-cgn-bypass-01, “Procedure to bypass DS-lite AFTR”, 2010-03-05 

 draft-cui-softwire-pet-02, “IPv4/IPv6 Coexistence Framework (PET)”, 2010-03-10 

 draft-cui-softwire-pet64-00, “PET for IPv6 to IPv4 communication”, 2009-10-19 
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 draft-despres-softwire-mesh-sam-01, “Stateless Address Mapping (SAM) – Mesh Softwires 
without e-BGP”, 2009-10-26 

 draft-despres-sofwire-sam-00, “Stateless Address Mapping (SAM) for Softwire-Lite Solutions”, 
2010-03-01 

 draft-donnerhacke-softwire-ipv6-6to4-00, “More specific unicast routing for 6to4”, 2009-11-26 

 draft-gundavelli-softwire-gateway-init-ds-lite-03, “Gateway Initiated Dual-Stack Lite 
Deployment”, 2010-03-08 

 draft-gui-softwire-6rd-ipv6-config-00, “IPv6 Host Configuration in 6rd Deployment”, 2010-03-01 

 draft-guo-softwire-auto-gre-00, “Auto GRE Tunnel for Hub and Spoke Softwire”, 2009-10-19 

 draft-guo-softwire-sc-discovery-03, “Softwire Concentrator Discovery Using DHCP”, 2010-03-05 

 draft-ietf-softwire-ds-lite-tunnel-option-02, “Dynamic Host Configuration Protocol for IPv6 
(DHCPv6) Options for Dual-Stack Lite”, 2010-03-02 

 draft-ietf-softwire-dual-stack-lite-04, “Dual Stack Lite Broadband Deployments Following IPv4 
Exhaustion”, 2010-03-08 

 draft-ietf-softwire-ipv6-6rd-08, “IPv6 via IPv4 Service Provider Networks ‘6rd’”, 2010-03-23 

 draft-ietf-softwire-6rd-udp-00, “UDP Encapsulation of 6rd”, 2009-10-18 

 draft-sarikaya-softwire-dslitemobility-01, “Dual-stack Lite Mobility Solutions”, 2009-10-20 

 draft-wing-softwire-4over6multicast-02, “Port Control Protocol (PCP)”, 2010-03-08 

 draft-xu-softwire-4over6multicast-02, “Softwire Mesh Multicast”, 2010-03-08 

 draft-xu-softwire-tunnel-endpoint-01, “Simple Tunnel Endpoint Signaling in BGP”, 2010-02-22 
 
 
PET (Prefixing, Encapsulation and Translation) 
 
One of the emerging softwire standards, which is trying to work out the optimal combination of 
tunneling and translation mechanisms to provide a workable framework for IPv4/IPv6 co-existence. The 
types of tunnels discussed are: 
 

 IP-in-IP tunnels (RFC 2893, RFC 4213) 

 GRE tunnel (RFC 1702) 

 6to4 tunnel (RFC 3056) 

 6over4 tunnel (RFC 2529) 

 Softwire transition technique (RFC 5565) 
 
The translation mechanisms discussed include: 
 

 SIIT (RFC 2765) 

 NAT-PT (RFC 2766 - deprecated) 

 BIS (RFC 2767) 

 SOCKS64 (RFC 3089) 

 BIA (RFC 3338) 

 IVI (draft-xli-behave-ivi) 
 

The draft discusses various combinations of the above tunneling and translation mechanisms to 
accomplish different kinds of co-existence. The recommended tunneling scheme is Softwire transition 
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technique (RFC 5565). It also notes that DNS may have to interact with the co-existence solution using a 
DNS Application Layer Gateway, such as DNS64. 
 
 
7.5 – Translation 
 
Translation between IPv4 and IPv6 is by far the most complex transition mechanism. It has all the issues 
of IPv4 to IPv4 Network Address Translation, plus new issues that complicate it even further. There is a 
great deal of activity in the IETF trying to create standards that will be implementable and deployable.  
 
Since IPv4 addresses are running out, many ISPs would like to deploy IPv6-only service to their 
customers (as opposed to dual-stack with both IPv4 and IPv6 service). Without translation, an IPv6-only 
node cannot access legacy IPv4-only nodes on the First Internet (which currently includes most online 
sites). Over time, more and more sites and services will be dual-stack, which will make IPv6-only nodes 
more useful. Until that time, translation gateways will be needed for IPv6-only nodes. It will be far 
simpler and cheaper, resulting in a superior user experience if both IPv4 and IPv6 are deployed, even if 
the IPv4 service is heavily NATted. However, ISPs seemed to be obsessed with deploying translation. 
There are a variety of ways that this can be accomplished, but most are quite complex and likely to be 
major sources of problems. 
 
Tunneling cannot achieve IPv4 to IPv6 interworking, but it’s highly transparent and lightweight, can be 
implemented by hardware, and can keep IPv4 routing and IPv6 router separated. It allows existing 
infrastructure (whether IPv4 or IPv6) to be used as a transport to link two nodes (or networks) using the 
other version of IP. 
 
Translation achieves direct intercommunication between IPv4 and IPv6 nodes or networks by means of 
converting the semantics between IPv4 and IPv6. However it has limitations in operational complexity 
and scalability. Like any NAT, it may have serious issues with transparency (some protocols may not 
work through it). Correct translation requires: 
 

 address or (address, port) tuple substitution 

 MTU discovery 

 fragmentation when necessary 

 Translation of both IP and ICMP fields 

 ICMP address substitution in payloads (e.g. with SIP) 

 IP/TCP/UDP checksum recomputation 

 Application Layer translation when necessary 
 

Stateless translation consumes IPv4 addresses to satisfy IPv6 hosts, which does not scale (for one thing 
we are running out of IPv4 addresses, for another, there are lots more IPv6 addresses than IPv4 
addresses). It can be implemented in hardware, but any ALG translation is too complex for hardware. 
 
Stateful translation requires maintaining complex state for dynamic mapping of (address, port) tuples, 
and cannot be implemented in hardware. 
 

 RFC 2765, “Stateless IP/ICMP Translation Algorithm (SIIT)”, February 2000 (Standards Track) 
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 RFC 2766, “Network Address Translation – Protocol Translation (NAT-PT)”, February 2000 
(Standards Track – Deprecated) 

 RFC 2767, “Dual Stack Hosts using the “Bump-In-the-Stack” Technique (BIS)”, February 2000 
(Informational) 

 RFC 3089, “A SOCKS-based IPv6/IPv4 Gateway Mechanism”, April 2001 (Informational) 

 RFC 4787, “Network Address Translation (NAT) Behavioral Requirements for Unicast UDP”, 
January 2007 (Best Current Practices) 

 RFC 4864, “Local Network Protection for IPv6”, May 2007 (Informational) 

 RFC 5382, “NAT Behavioral Requirements for TCP”, October 2008 (Best Current Practice) 

 RFC 5508, “NAT Behavioral Requirements for ICMP”, April 2009 (Best Current Practice) 
 

 draft-ietf-behave-v6v4-xlate-18, “IP/ICMP Translation Algorithm” 

 draft-xli-behave-ivi-07, “The CERNET IVI Translation Design and Deployment for the IPv4/IPv6 
Coexistence and Translation”, 2010-01-06 

 draft-ietf-behave-dns64-09, “DNS64: DNS extensions for Network Address Translation from IPv6 
Clients to IPv4 Serves”, 2010-03-30 

 draft-ietf-behave-v6v4-xlate-stateful-11, “Stateful NAT64: Network Address and Protocol 
Translation from IPv6 Clients to IPv4 Servers”, 2010-03-30 

 draft-ietf-behave-address-format-07.txt, “IPv6 Addressing of IPv4/IPv6 Translators”, 2010-04-09 

 draft-ietf-behave-v6v4-framework-08, “Framework for IPv4/IPv6 Translation”, 2010-03-22 

 draft-haddad-mext-nat64-mobility-harmful-00, “A Note on NAT64 Interaction with Mobile IPv6”, 
2009-10-11 

 draft-chen-behave-olnat-01, “A Optimal Load-balance mechanism for NAT64 (OL-NAT)”, 2009-
10-26 

 draft-wang-behave-nat64-load-balancer-01, “Some Considerations on the Load-Balancer for 
NAT64”, 2010-02-21 

 draft-wing-behave-nat64-referrals-01, “Referrals Across an IPv6/IPv4 Translator” 
 
RFC 4864, “Local Network Protection for IPv6” makes a very strong case against use of NAT in IPv6, 
which was designed with the express intention of making NAT unnecessary. It shows how simple IPv6 
mechanisms can provide all of the perceived benefits of NAT in existing IPv4 networks, without recourse 
to NAT. 
 
RFC 2765, “Stateless IP/ICMP Translation Algorithm (SIIT)”, is used in NAT-PT, IVI and NAT64/DNS64. It is 
not a candidate itself for v6->v4 translation, but is included to help understand other more complete 
mechanisms. 
 
RFC 2766, “Network Address Translation – Protocol Translation (NAT-PT)”, is not a viable candidate, as 
so many problems have been encountered that it has been officially deprecated to historic status by the 
IETF. 

 
RFC 3089, “A SOCKS-based IPv6/IPv4 Gateway Mechanism” is not a viable candidate, because it requires 
“socksification” (modifications to the source code to insert a SOCKS layer between all system calls and 
the socket API) of all software applications that need to use the gateway. 
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IVI (currently described in draft-xli-behave-07) is a potentially viable candidate for v6->v4 translation, as 
it has been used extensively in CERNET in China, to allow IPv6-only clients to access IPv4-only servers. 
Since this mechanism is still in Internet Draft form, it should be considered experimental, and not for 
deployment in critical infrastructure. 
 
NAT64/DNS64 (currently described in draft-ietf-behave-v6v4-xlate-stateful-11 and draft-ietf-behave-
dns64-09) are a potential candidate for v6->v4 translation, and an open source implementation is 
available from gogo6. Since these mechanisms are still in Internet Draft form, they should be considered 
experimental, and not for deployment in critical infrastructure. 
 
 
7.5.1 – NAT64 / DNS64 
 
This translation mechanism requires both a NAT64 gateway and either a DNS server that supports 
DNS64 mapping, or a DNS ALG that supports DNS64. What follows is a highly simplified description of 
operation. The full details are covered in the Internet Draft (there is quite a bit of complexity involved in 
the real operation). 
 
The NAT64 gateway should have two interfaces, one connected to the IPv4 network (with a valid IPv4 
address on that network), and the other connected to the IPv6 network (with a valid IPv6 address on 
that network). IPv6 traffic from a node on the IPv6 network going to an IPv4 node is sent in IPv6 and 
routed to the NAT64 gateway. The gateway does address translation and forwards the translated 
packets to the IPv4 interface, from which it is routed to the destination node. Reply packets from the 
IPv4 node are sent in IPv4 to the gateway, are translated into IPv6 and forwarded to the IPv6 interface, 
from which they are routed back to the original sender. This process requires state, binding an IPv6 
address and TCP/UDP port (referred to as an IPv6 transport address) to an IPv4 address and TCP/UDP 
port (referred to as an IPv4 transport address). 
 
Packets that originate on the IPv4 side cannot be correctly translated, because there would be no state 
from the packets coming through the gateway in the v6->v4 direction. NAT654 is not symmetric. For 
traffic initiated by an IPv6 node, everything works right. Once the binding is created, that traffic flow can 
continue (from the IPv6 node to the IPv4 and back). 
 
For the traffic originating on the IPv4 side to be translated to IPv6 requires some additional mechanism, 
such as ICE or a static binding configuration. 
 
This mechanism depends on constructing IPv4-Converted IPv6 addresses (defined in draft-ietf-behave-
address-format-nn). Each IPv4 address is mapped into a different IPv6 address by concatenating a 
special IPv6 prefix assigned to the NAT64 device (Pref64::/n). 
 
It also uses a small pool of IPv4 addresses, from which mappings will be created and released 
dynamically, as needed (as opposed to permanently binding specific IPv4 addresses to specific IPv6 
addresses). This implies that NAT64 does both address and port translation. 
 
When an IPv6 initiator does a DNS lookup to learn the address of the responder, DNS64 is used to 
synthesize AAAA resource records from A resource records. The synthesized AAAA resource records are 
passed back to the IPv6 initiator, which then initiates an IPv6 connection with the Ipv6 address that is 
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associated with the Ipv4 receiver. The packet will be routed to the NAT64 device, which will create the 
IPv6 to IPv4 address mapping as described before. 
 
In general dual-stack nodes should not use DNS64. If they get a synthesized IPv6 address and a native 
IPv4 address, the rule to prefer IPv6 will cause the dual-stack host to do the access via the NAT64 
gateway instead of direct using IPv4. If you deploy DNS64, it should be used only by IPv6-only nodes, and 
there should be a regular DNS for use by any dual-stack nodes. 
 
 
7.5.2 – IVI 
 
This address translation scheme is being used on a large scale between CERNET (IPv4-only) and CERNET2 
(IPv6-only) to nodes on either side to connect to nodes on the other side, as well as allowing IPv6-only 
nodes connect to IPv4 nodes out on the public Internet.  
 
The pros of using IVI are as follows: 
 

 It is stateless, so it scales to large number of nodes better than NAT64 / DNS64 

 The translation is decoupled from DNS 

 It is symmetric, so can be used for connections initiated on either side of the gateway (IPv4 to 
IPv6 side, or IPv6 to IPv4 side) 

 There is an open source implementation of the IVI gateway and DNS64 ALG available on Linux. 
 

The cons of using IVI are as follows: 
 

 An ALG is still required for any protocol that embeds IP addresses in the protocol, such as SIP. 

 It restricts the IPv6 hosts to use a subset of the addresses inside the ISP’s IPv6 block. Therefore, 
IPv6 Stateless Address Autoconfiguration cannot be used to assign IPv6 addresses to nodes. You 
must either manually assign addresses, or use stateful DHCPv6. 

 There are still some issues with end-to-end transparency, address referrals and incompatible 
semantics between protocol versions. 

 You still need a DNS64 ALG for DNS. 
 
 
7.6 – Recommendations on Transition Mechanisms 
 
There are so many problems with scalability, stability, transparency, and need for nonstandard 
infrastructure (e.g. DNS64), possibly not being able to use Stateless Address Autoconfiguration, that if at 
all possible, you should avoid using translation. It is not difficult to deploy dual-stack in your LAN (either 
using conventional Dual Stack, or Dual-Stack Lite if that is what your ISP provides). The complexity from 
running two parallel networks (IPv4 and IPv6) on the same infrastructure is minor compared to the 
issues from using translation. If direct dual stack ISP service is available, then definitely you should 
deploy dual-stack in your network. If not, you can easily tunnel in IPv6 service to a gateway 
router/firewall and route it into your network alongside existing IPv4.  
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If you restrict those protocols that don’t work well with NAT to run only on the IPv6 side (e.g. SIP, IPsec 
VPN, P2P, etc), then the IPv4 side can have addresses that are heavily (even multiply) NATted, so there is 
no problem finding addresses for the IPv4 side, even after the IPv4 address space is depleted. Legacy 
applications that work well even over NAT can be run over the IPv4 side until there are time and 
resources available to migrate them to IPv6. 
 
Virtually all modern operating systems support dual-stack today. Most Microsoft products (client and 
server) have good support for dual-stack. Most open-source applications support it very well. 
 
All standard infrastructure can be used – no need for NAT specific variants of things like DNS. 
 
If you have to use translation, IVI is probably the least of several evils, and has a track record of working 
well on a large scale in CERNET / CERNET2 in China. You should plan on using stateful DHCPv6 to assign 
addresses (since Stateless Address Autoconfiguration won’t work). You should deploy client nodes with 
only IPv6, and depend on access via the IVI gateway for any IPv4 access. You will still have issues with SIP 
over IPv4, so you should either plan on using SIP only over IPv6, or deploy a SIP ALG to resolve the issues 
with addresses in the protocol. 
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Chapter 8 – DNS 
 

 
DNS (the Domain Naming System) is a critical part of today’s Internet. Without it, we would have to 
keep massive (and always out-of-date) directories (like telephone books), where you could look up the 
name of some site (such as Dell’s pages about their PCs), then find the “telephone number” (IP address) 
of that page, which you would then “dial” (type into your browser). This is clearly not very practical. DNS 
is such a complex and critical topic for both TCP/IPv4 and TCP/IPv6 that I have included a chapter just for 
it. 
 
 
8.1 – How DNS Evolved 
 
Various schemes have been used to keep track of node names and their corresponding IP addresses. The 
end result is a remarkably powerful and flexible system called DNS. 
 
 
8.1.1 – Host files 
 
In the early days of TCP/IP, a file of known “hosts” (nodes) was kept in a special file called hosts in the 
/etc directory of all UNIX computers (the complete filename was /etc/hosts). This file included one or 
more lines, each of which contained an IP address, followed by one or more nodenames (e.g. www) or 
even fully qualified nodenames (e.g. www.ibm.com). If you told your copy of UNIX to use the hosts file 
for “name resolution”, when you used one of the nodenames listed in your hosts file, it would use the IP 
address associated with that name. This still works today – you can override DNS with your hosts file if 
you specify it first in the search order. Even Windows systems have a hosts file, typically located at  
 
 C:\Windows\System32\drivers\etc\hosts 
 
A typical hosts file might look like: 
 
 172.20.0.11 ws1 ws1.hughesnet.local 

 172.20.0.12 ws2 ws2.hughesnet.local 

 172.20.0.13 us1 us1.hughesnet.local 

 
 
8.1.2 – Network Information Service (NIS) 
  
In organizations with many UNIX computers, and especially once people started linking networks 
together with TCP/IP, it became necessary to keep everyone’s hosts file up to date and synchronized. 
This was done manually for a while, then NIS (Network Information Service) was created by Sun to 
automatically distribute copies of the official hosts file (in addition to other important configuration files 
for UNIX) to every node, on a periodic basis. 
 
 
8.1.3 – DNS is invented 
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Soon even this became unwieldy, so in 1993, at the request of Jon Postel, Paul Mocapetris designed DNS 
as a distributed database engine with distributed data. We are still using this system today. You will find 
that with minor extensions, it even supports IPv6 and Dual Stack networks. There is a gigantic, 
worldwide hierarchical system of DNS servers that allow each network administrator to manage the 
names and IP addresses of nodes in their network that users anywhere in the world might need to know 
about (e.g. that organization’s web servers, e-Mail servers, etc). DNS is also used to keep track of the 
nodenames and IP addresses of all internal nodes in their network, which only users in their organization 
need to know about (the organization’s file servers, network printers, intranet web servers, etc). 
 
 
8.2 – Domain Names 
 
Domain names refer to the hierarchical name space as defined by RFC 1035 (above); RFC 1123 
“Requirements for Internet Hosts – Application and Support”, October 1989; and RFC 2181, 
“Clarifications to the DNS Specification”, July 1997. Briefly, domain names consist of a list of names (e.g. 
atlanta, usa, exampleco and com, in most specific to least specific order, separated by periods (e.g. 
atlanta.usa.exampleco.com). Here, com is the TLD (or Top Level Domain) name for commercial 
organizations. The name exampleco is the name of a hypothetical company, which is a commercial 
organization, and all parts of it use the domain  exampleco.com. Within ExampleCo, there is a branch in 
the U.S., which uses the subdomain usa.exampleco.com. Finally, there is an office in Atlanta GA, which 
uses the subdomain atlanta.usa.exampleco.com. If there is a web server named www in that office, it 
would have a fully qualified domain name of www.atlanta.usa.exampleco.com. There is no way to tell 
(without more information) if the first name in such a string is a node’s name or the first component of a 
domain name.  
 
 
8.2.1 – Top Level Domain Names 
 
There are a number of TLDs including generic ones that have been in use for a long time: 
 
 com for commercial organization (company) 
 org non-commercial organization 
 edu Educational organization 
 net Internet related, e.g. ISP 
 gov Government related 
 mil Military related 
 
There are also many ccTLDs (country code Top Level Domains), each of which uses the ITU two letter 
code for the country, such as us, uk, jp, and ph). There are a few exceptions to the ITU code usage, e.g. 
the ITU code for Great Britain is gb, while their ccTLD is uk. Each country manages subdomains under 
their ccTLD as they best see fit. Certain ccTLDs appear to have other meanings, like tv for the country of 
Tuvalu, which sells domains in their space to people who want to use it to mean television. Under 
ccTLDs, there are usually (but not always) second level domains, such as co for commercial, or for 
organization, etc. Actual organization names would then be third level domain names. Hence a UK based 
commercial entity called Warmbeer, Ltd.  might have the domain name warmbeer.co.uk. Their web 
server might be www.warmbeer.co.uk. A few ccTLDs, like ph for the Philippines use the full three letter 
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code for organization type instead of the more common two letter codes, as second level domain name. 
For example, our Philippine domain name is infoweapons.com.ph.  
 
Recently, some new generic TLDs have been introduced, including info, ws, museum, aero, asia, biz, 
coop, int, mobi, name, pro, tel and travel. None of those have become really popular yet. The main 
reason people use them is that they can’t get the domain name they want using the more common TLDs 
like com, org or net.  
 
 
8.2.2 – Internationalized Domain Names 
 
There are also internationalized domain names (IDNs) that use 16-bit Unicode characters to allow 
domain names in languages that have non-Latin alphabets. Your browser will translate these Unicode 
domain names into strings in UTF8, using the punycode algorithm (shown in the last column below). This 
is defined in RFC 3492, “Punycode: A Bootstring encoding of Unicode for Internationalized Domain 
Names in Applications (IDNA)”, March 2003. For example, the following (believe it or not) are 
syntactically valid URLs (although they do not current point to real sites):  
 
 http://пример.испытание/  Russian  http://xn--e1afmkfd.xn--80akhbyknj4f/ 

 http://例子.测试/   Chinese  http://xn--fsqu00a.xn--0zwm56d/ 

 http://실례.테스트/   Korean  http://xn--9n2bp8q.xn--9t4b11yi5a/ 

 http://例え.テスト/  Japanese http://xn--r8jz45g.xn--zckzah/ 

 http://      .     /  Indian  http://xn--p1b6ci4b4b3a.xn--11b5bs3a9aj6g/ 

 
 
8.3 – DNS Resolver 
 
All operating systems today include a DNS client, called a resolver. All network applications use the 
resolver to look up nodenames and obtain their corresponding IP addresses, whether those nodes are 
local (on the organization LAN) or external (out on the Internet). The resolver contacts one of the DNS 
servers specified in their TCP/IP configuration (either local, or at your ISP). If that server is authoritative 
for the requested domain names, it returns the addresses immediately. Otherwise, that server can 
either return a hint of where to look (“I don’t have that information.. try here”) or do a recursive lookup 
(“I didn’t have that information, but I went and found it for you”). Of course, the lookup could fail (“I 
couldn’t find that domain name anywhere”). 
 
 
8.4 – DNS Server Configuration 
 
The full process of setting up DNS servers (usually two or more) for an organization and populating them 
with node information is too complicated to cover in this book. If you are using the Microsoft DNS server 
(included free with Windows Server), see their documentation for details. If you are using BIND (the 
freeware DNS server from the Internet Software Consortium, see O’Reillys “BIND and DNS, 5th Edition” 
for details. If you have a DNS appliance, consult their documentation or online help for details. 
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In general though, you define both “forward zones” that map nodenames to IP address, and “reverse 
zones” that map IP addresses onto nodenames. You also have to inform all client computers of the IP 
addresses of at least two DNS servers, that they can use for resolving nodenames to IP addresses (or 
vice versa). Client computers can be informed of these DNS server addresses either via manual 
configuration, or automatically via DHCPv4 or DHCPv6. If your client computer doesn’t know where to 
find DNS servers, you may have full Internet connectivity but no name resolution. You can ping (or even 
surf to) nodes anywhere in the world by specifying their numeric IP addresses (e.g. http://64.170.98.32 
– try it!). However, most people would consider such a computer to not be very useful. This gives you a 
very good idea of how important DNS is to the Internet (even the Second Internet). 
 
 
8.5 – DNS Protocol 
 
DNS is an Application Layer protocol. It uses UDP port 53 (for most queries and responses) or TCP port 
53 (for zone transfers between DNS servers).  It was originally defined in RFC 882, “Domain Names – 
Concepts and Facilities”, November 1983, and RFC 883, “Domain Names – Implementation and 
Specification”, November 1983. Those were replaced by RFC 1034 “Domain Names – Concepts and 
Facilities”, November 1987, and RFC 1035, “Domain Names – Implementation and Specification”, 
November 1987. There have been numerous updates to these, including RFCs 1101, 1183, 1348, 1876, 
1982, 1995, 1996, 2065, 2136, 2137, 2181, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343 and 
4592. 
 
 
8.6 – DNS Resource Records 
 
The data in DNS servers is kept in resource records. In forward zones, it is possible to have any of the 
following resource records (the following list is not comprehensive): 
 
 Name  Contents 
 A  “A” - IPv4 address associated with a domain name 
 AAAA  “Quad-A” - IPv6 address associated with a domain name 
 MX  “Mail eXchange” – domain name of a mail server for the domain 
 SRV  “Service” – domain name of servers for other protocols, such as SIP and LDAP 
 CNAME “Alias” – provide an alternative domain name for another domain name 
 HINFO  “Host Info” – any arbitrary info you want to provide about a host 
 NAPTR  “Naming Authority Pointer” – used mostly in ENUM 
 NS  “Name Server” – name of a valid DNS server for this domain 
 SOA  “Start of Authority” – start of a zone in configuration files, includes default TTL 
 SPF  “Sender Policy Framework” – used in anti-spam technology 
 TSIG  “Transaction Signature” – symmetric cryptographic key used in zone transfers 
 TXT  Any arbitrary text information 
 
In reverse zones, typically only the following resource records are found: 
 
 NS  “Name Server” – name of a valid DNS server for this domain 
 SOA  “Start of Authority” – Same as in forward zones 
 PTR  “Pointer Record” – IP address for a specific node, in reverse order 
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The following examples show how typical resource records look: 
 
ws1  IN   A  172.20.0.11 
ws1  IN   AAAA 2001:418:5403:3000::c 
  IN   MX  10 ws1.hughesnet.org 
11.0.20.172 IN   PTR  ws1.hughesnet.org 
c.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.3.0.4.5.8.1.4.0.1.0.0.2 IN  PTR  ws1.hughesnet.org 
 
In general, it is a pain to manually create reverse PTR records, and any change to IP addresses (e.g. from 
changing ISPs) requires changes to all forward and reverse resource records in DNS. Here again, an 
appliance with GUI can help by automatically generating reverse PTR resource records. This is especially 
useful for IPv6 reverse PTR records. 
 
In the InfoWeapons SolidDNS appliance, you can define named networks for IPv6. When you define a 
network, which will create the associated reverse zone, you can assign that network a name, which has 
the value of the network’s prefix. You can then define node addresses in terms of the network name. 
First, this fills in the first 64 bits of each address, which reduces errors and saves time. However, if you 
ever change ISPs, you can simply redefine the prefix for the network, and all forward and reverse 
resource records created from the nodes specified using that network name will be updated with the 
new prefix. This is called instant prefix renumbering.  There was an a6 resource record created at one 
point for IPv6 forward resource records that was supposed to accomplish this, but there were so many 
problems with it, it has now been deprecated (you are not supposed to use it any more). It is much 
better to do this in an appliance that has GUI and database, and generates only the standard AAAA 
resource records. 
 
 
8.7 – DNS Servers and Zones 
 
A given DNS server can have any number of zones defined on it. A given zone can be a forward zone (for 
mapping domain names to IP addresses) or a reverse zone (for mapping IP addresses to domain names). 
There is usually one forward zone for each domain for which the DNS server contains information (e.g. 
hughesnet.org), and one reverse zone for each network that DNS server contains information for (e.g. 
172.20.0.0/16). So, the forward zone for hughesnet.org might contain mappings for ws1.hughesnet.org 
to 172.20.0.11, for us1.hughesnet.org to 172.20.0.13, and so on. The reverse zone for 172.20.0.0/16 
might contain mappings from 172.20.0.11 to ws1.hughesnet.org, from 172.20.0.13 to 
us1.hughesnet.org, 172.20.0.91 to us1.v6home.org, and so on. 
 
Any zone (forward or reverse) can be a primary zone or a secondary zone. A primary zone is one on 
which the DNS administrator manages the contents of (either via a GUI interface or via editing BIND 
configuration files). A secondary zone is one whose contents are automatically transferred from a 
corresponding primary zone of the same name on a different DNS server (no management is required 
for a secondary zone, once that zone is created).  When you create a secondary zone, you specify the IP 
address of the DNS server that contains the corresponding primary zone. Usually there is one primary 
zone (on one DNS server) and one or more secondary zones (each on other DNS servers) for a given set 
of records. A given DNS server can have any mix of primary zones and secondary zones. Sometimes the 
terms primary and secondary are used for entire DNS servers, especially if all zones on a server are all 
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primary zones or all secondary zones, but technically the terms refer to zones, not servers. The transfer 
of all records from a primary zone on one DNS server to a secondary zone on another DNS server is 
called a zone transfer. Typically a primary zone is configured to allow zone transfers only to secondary 
zones on authorized DNS servers (by IP address). There is also a cryptographic authentication scheme 
called TSIG that can restrict zone transfers to only authorized secondary zones. Otherwise, a hacker 
could perform a zone transfer from one or more of your primary zones, and obtain information useful in 
attacking your network (effectively, a “map” of at least part of your network). Typically zone transfers 
from primary zones to secondary zones are done automatically on a periodic basis). If a hacker changes 
data in a secondary zone, the correct data would be automatically restored as of the next zone transfer. 
If a hacker changes data in a primary zone, the hacker’s changes will be automatically and securely 
transferred to all secondary zones via the regular zone transfers. It is very important to secure your 
primary zones. 
 
It is possible for all of the zones on a given DNS server to be accessible by one or more clients for 
performing DNS resolutions (lookups), in which case it is a resolving server. A primary server that is not 
accessible for resolutions by any client (or other DNS servers) is called a stealth server. It is only ever 
used to do zone transfers to secondary servers (hence need not be very powerful). Access via UDP port 
53 can be completely disabled (zone transfers take place over TCP port 53), and even those can be 
restricted by IP address. Use of a stealth server lowers the possibility of hackers being able to attack 
your primary DNS server. There would be no real use for a “stealth secondary server”.  
 
 
8.8 – Different Types of DNS Servers 
 
There are different types of DNS servers based on how they are populated with data. 
 
 
8.8.1 – Authoritative DNS Servers 
 
A DNS server which contains a primary zone or a secondary zone is said to be authoritative for the 
domain (or network) defined in that zone. All resolving servers cache (temporarily store) the results of 
any query they perform on clients. 
 
If a client makes a query of a resolving server that currently has the required information (either 
because it is authoritative or because it has cached it from a previous query) it responds with that 
information to the client immediately. If a resolving server is asked for information it does not currently 
have, it can either return a reference (“I don’t know, go ask this server”), or it can do a recursive query 
on the client’s behalf (“I didn’t know, but I went and found out for you by making client queries myself 
on your behalf, and here is what I found.”) A recursive query can go through several servers before the 
requested information is finally obtained and returned to the client that asked for it in the first place. 
Any server involved in the process typically caches the retrieved information. Every record published by 
a DNS server has a Time To Live (TTL) defined for it. When a record is cached, it is kept on the caching 
server only for the defined Time To Live for that record, after which it is considered stale and is 
discarded. Once a DNS server discards stale information, if it is asked for it again, it must do another 
recursive query, at which point it again caches the record. This caching and expiration scheme keeps the 
data current, but means that a change to authoritative information may take a while to propagate to all 
other servers (often 24 to 48 hours, depending on Time To Live values chosen). 
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When a client obtains information from an authoritative server, it is reported as an authoritative 
answer. When it obtains information that has been cached, it is reported as a non-authoritative answer. 
This doesn’t mean it is any less trustworthy, just that it obtained the information at “second hand”, (out 
of some DNS servers cache) instead of directly from the authority on the subject (an authoritative 
server). 
 
 
8.8.2 – Caching-Only Servers 
 
A resolving server that has no defined primary or secondary zones, is called a caching only server, and 
typically, once setup and configured, requires little or no management. 
 
 
8.9 – Client Access to DNS 
 
In a typical network, every client should have the addresses of at least two valid resolving DNS servers 
configured. If a connection to one of them fails, the client will automatically try the other configured 
addresses.  This increases the robustness of the network. In a small network (e.g. home connection), the 
specified servers may be located at and managed by the ISP. In some cases, the DSL or cable modem 
might provide a DNS proxy function, which allows DNS queries to be submitted to the default gateway 
address. The modem relays such requests to the DNS servers configured in the modem, and returns the 
replies to the internal client that made the request. 
 
Any network can have one or more local DNS servers (assuming they can make outgoing queries via UDP 
port 53). To run an authoritative server on a network, that server must be accessible by relevant clients 
and other servers. If any of those clients or servers is external, then the authoritative server must have a 
globally accessible “external” IP address (not a private IP address). For example, I run an authoritative 
DNS server for my domain hughesnet.org in my home, on a DNS server that has a valid external IP 
address. I also run other servers (e-mail and web) that have globally accessible external IP addresses (in 
my case, both IPv4 and IPv6 addresses). I can access these services from anywhere on the Internet, just 
like using servers at ISPs. This sort of thing is far simpler and less expensive with IPv6 than with IPv4. 
 
 
8.9 1 – Recursive DNS Queries 
 
A single DNS query (e.g. “lookup the IP addresses for node ws1.hughesnet.org”) can actually require 
several resolutions. If the server already has information for ws1.hughesnet.org , either because it is 
authoritative for that information, or because it has still valid cached information, it returns the 
requested information immediately (“ws1.hughesnet.org has an IPv4 address which is 172.20.0.11 and 
an IPv6 address which is 2001:418:5403:3000::c”). It is up to the client which of these is used. If it is a 
dual-stack client (supports both IPv4 and IPv6) it should use the IPv6 address by preference. 
 
If information for ws1.hughesnet.org is not present on the resolving DNS server, that server must find 
the authoritative server for the domain hughesnet.org. The server that is authoritative for the domain 
org can tell it this information. To locate that server, the resolving server can ask any root DNS server. To 
locate a root DNS server, the resolving server can look in its root hints file. Any of these things could 
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already be in cache (and typically are, if any other nodename ending in .org or .hughesnet.org have been 
looked up by any client recently). If none of them are in cache, then first, the resolving DNS server will 
ask a root DNS server “who is authoritative for domain org”. It will cache the response it gets, and ask 
the returned server for org “who is authoritative for domain hughesnet.org”. It will cache that response 
also, and ask the returned server for hughesnet.org  “what is the IP address of ws1.hughesnet.org”.  It 
will cache that response as well, and return the answer to the client, who has been patiently waiting. 
Most DNS servers have a way to empty (or “dump”) the cache if you would like to watch all of this 
happen with a network sniffer (this would require root level access on the computer running your DNS 
server). 
 
 
8.10 – The Root DNS Servers 
 
All DNS queries eventually chain up to one of the 13 root DNS servers (or the cached data from them). In 
reality, “DNS anycast” is employed so that there are actually quite a few copies of most of the 13 root 
servers distributed around the world (see table below). The current information on the root servers 
(from which I made the table below) is always available at: 
 
 http://www.root-servers.org 
 
Every DNS server includes a file with the current anycast addresses of the 13 root servers (a.root-
servers.net to m.root-servers.net), as summarized in the table below. A copy of the official current file 
(in BIND format) can always be found at: 
 

http://www.internic.net/zones/named.root 
 
All DNS server operators from time to time obtain the current copy of this file and update their server(s) 
root hints file with it. The information in this file allows a DNS server to locate a root server when it 
needs one. 
 
The only thing the DNS root servers publish is the information in a short file that is maintained by IANA 
that helps other DNS servers locate the DNS hierarchy layer just below that of the DNS root servers (i.e. 
the servers that are authoritative for the top level domains such as com, net, org, uk, jp, etc.) All root 
servers publish the same information, so only one ever needs to be asked (typically chosen at random 
from the 13 available). A copy of the current version of this information (in BIND format) can always be 
found at: 
 

http://www.isoc.org/briefings/020/zonefile.shtml 
 

Only operators of DNS root servers ever actually need to obtain this file and update their DNS root 
servers with it. In reality, due to DNS caching the actual root servers are only rarely involved in a typical 
DNS query. A typical non-root DNS server only needs to access a root server about once every 48 hours. 
It would normally have the information published by the root servers cached in memory from previous 
enquires. Only once the Time To Live expires for a given resource record obtained from an actual root 
server, would the DNS server have to go back and obtain more up to date information from a DNS root 
server (which it would again cache to use in future lookups). Most of the time, this new information will 
just be the same information that just expired. 
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Current Root Servers (all in the domain “root-servers.net”) 
 
Name Organization   Count IPv4 Address  IPv6 Address 

 

A VeriSign, Inc.  6/3 198.41.0.4  2001:503:ba3e::2:30 

B Information Sciences Inst. 1/1 192.288.79.201 2001:478:65::53 

C Cogent Communications 6/0 192.33.4.12  - 

D University of Maryland 1/0 128.8.10.90  - 

E NASA Ames Research Center 1/0 192.203.230.10 - 

F Internet Systems Consort. 49/22 192.5.5.241  2001:500:2f::f 

G U.S. DoD Network Info Ctr 6/0 192.112.36.4  - 

H U.S. Army Research Lab 1/1 128.63.2.53  2001:500:1::803f:235 

I Autonomica   34/0 192.36.148.17  - 

J VeriSign, Inc.  70/6 192.58.128.30  2001:503:c27::2:30 

K RIPE NCC   18/10 193.0.14.129  2001:7fd::1 

L ICANN    3/3 199.7.83.42  2001:500:3::42 

M WIDE Project   6/5 202.12.27.33  2001:dc3::35 

 

 
In the above table, the first number in the count field (before the slash) is the total number of anycast 
servers for that name, regardless of IP version. The second number (after the slash) is the number of 
anycast servers for that name that can accept queries over IPv6. Currently, all root servers will accept 
queries over IPv4 (this may not always be the case). All root servers can return A and/or AAAA records 
for the servers authoritative for Top Level domains. One of the watershed events for IPv6 happened in 
February 2008, when VeriSign enabled IPv6 access on enough of the root servers that a client doing 
queries over IPv6 would always be able to complete a query without having to fail back to IPv4. Since 
then, clients that access DNS over IPv6 (IPv6-only nodes or dual stack nodes) can resolve names to 
addresses as effectively as IPv4-only nodes have been able to since the introduction of DNS. Eventually 
all root servers will probably support queries over IPv6. 
  
Total Root Server Names = 13 
Total Root Server Names that accept connections over IPv6 = 8 (61.5% of names) 
Total Deployed Root Servers = 202 
Total Deployed Root Servers that accept connections over IPv6 = 51 (25.2% of total) 
 
 
8.11 – MX and SRV records 
 
In addition to providing nodename to IP address lookup (forward resolution) and IP address to 
nodename lookup (reverse resolution), DNS servers can also advertise the preferred servers for various 
functions, such as e-mail (SMTP), VoIP (SIP), etc. 
 
The MX (Mail Exchanger) record can advertise one or more e-mail server names, with priorities. Other 
mail servers when they want to deliver mail to your domain will do a DNS query asking for the MX 
record(s) for your domain. The sending server will try to make connections over port 25 (SMTP) to the 
advertised nodenames, in decreasing priority, until it either has a connection accepted (in which case it 
will deliver all the mail it has for your domain), or it runs out of advertised nodenames (in which case it 
will try again on some schedule, until it succeeds, or decides your domain is not currently online). Thus a 
client can send messages to any name at your domain (fred@hughenet.org), and it will be delivered to 
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one of your preferred mail servers, which will then deliver it to that person’s mailbox, or return it as 
undeliverable. 
 
The SRV record (defined in RFC 2782, “A DNS RR for specifying the location of services (DNS SRV)”, 
February 2000) can be used to specify preferred servers for your domain for services other than e-mail, 
such as VoIP (SIP), Jabber Instant Messaging (XMPP), and Directory Services (LDAP). In the same style as 
e-mail addresses, it is possible to specify a new style “phone number” as a SIP URI, e.g. 
sip:fred@hughesnet.org. A good SIP client could take that URI, do a DNS SRV query to determine the 
preferred SIP server for the domain hughesnet.org, then attempt to connect to user fred on that server. 
The SRV mechanism of DNS will make VoIP as scalable and decentralized as the current Internet e-mail 
system is. The same mechanism would allow clients anywhere in the world to contact your Jabber IM 
client (im:fred@hughesnet.org), or retrieve your directory entry from your organization’s external LDAP 
server. 
 
 
8.12 – ENUM 
 
During the transition from legacy telephony service (using ITU E.164 numeric phone numbers) to more 
general SIP URIs, there is a need for a transition mechanism. One has been developed called ENUM 
(which stands for E.164 Numbers, where E.164 is the ITU standard for conventional numeric telephone 
numbers, including the international country codes (e.g. +1 for U.S., +63 for Philippines, +852 for Hong 
Kong). ENUM is implemented as a subfunction of DNS. 
 
With ENUM, you do the equivalent of reverse DNS lookups, but from ITU telephone numbers to one or 
more URIs, typically including a SIP URI. This allows people with legacy telephone customer equipment 
that only has a 10 key pad to map E.164 telephone numbers onto the complex alphanumeric SIP URIs 
(e.g. sip:fred@hughesnet.org). In addition to SIP URIs, you can also map a single E.164 number onto 
other URIs, including instant messaging (im:), email (mailto:), web (http:), etc. This would allow a smart 
client that supports unified messaging via various protocols to contact you via any of your addresses 
using a single numeric “phone number”. These URIs are associated with an E.164 number using the 
NAPTR DNS resource record. In theory, the long list of various kinds of “addresses” on your business 
card whereby people can contact you (telephone, fax, e-mail, im, web, etc) could be replaced with a 
single ENUMber. There are standalone ENUM clients that can allow someone to simply view the 
mappings for any ENUMber, for use with devices such as legacy telephone handsets. 
 
Essentially, you dial a person’s ENUMber, then your client (or your VoIP server) does a DNS query to 
map that onto one or more URIs, which it then uses to contact that person. ENUM can be run at the 
national level, typically by a large telco or a government agency, using ENUMbers that start with the 
actual country code. In this case, the general public DNS system is used to do the mapping. It can also be 
done on a private basis, using any “country code” you want (even made up ones), but requires clients to 
use you’re a custom DNS server to do the custom mapping (all ENUM compliant clients allow 
specification of which DNS server to use for ENUM lookups). 
 
If traditional DNS management is used to manage the URI mappings for a large number of people, this 
could be an enormous workload and lead to long delays in making additions or changes to URI 
mappings. It is better to allow the end users to view and modify their own mappings. This requires user 
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authentication, which most often would be linked to an existing authentication server, such as Microsoft 
Active Directory (within an organization) or RADIUS (for a telco or ISP). 
 
Because most phones from 3.5G onward will be based on IPv6, it is important that an ENUM capable 
DNS server support queries over IPv6. There will be some legacy phones that still use IPv4 for some 
time, so it must also support queries over IPv4. In other words, the DNS server used for ENUM must be 
dual-stack. 
 
ENUM is defined in RFC 3761, “The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation 
Discovery System (DDDS) Application (ENUM)”, April 2004. 
 
There is more information on ENUM on the following websites: 
 
 http://www.enum-forum.org 
 http://www.ripe.org/enum 
 http://www.itu.int/infocom/enum/ 
 
 
8.12 – DNSSEC (Secure DNS) 
 
As mentioned before, it is possible for a hacker to tamper with the information in the DNS system. You 
may think you are surfing to your bank’s website, but it could be a clever mockup in some hacker’s 
basement. It will show the correct URI in your browser, but anything you input (like your login) can be 
easily captured by the hacker, and then used to gain access to your account on the real site. A hacker 
could also trick people into reading fake news stories that appear to be from legitimate websites. 
 
There are some patches to BIND that make it more difficult for a hacker to alter DNS data, but the only 
surefire way to detect it is to add digital signatures into the DNS system. The following RFCs define such 
an extension to DNS, which is called DNSSEC. 
 
RFC 3833, “Threat Analysis of the Domain Name System (DNS)”, August 2004 
RFC 4933, “DNS Security Introduction and Requirements”, March 2005 
RFC 4034, “Resource Records for the DNS Security Extensions”, March 2005 
RFC 4035, “Protocol Modifications for the DNS Security Extensions”, March 2005 
RFC 4431, “The DNSSEC Lookaside Validation (DLV) DNS Resource Record”, February 2006 
RFC 4641, “DNSSEC Operational Practices”, September 2006 
RFC 5074, “DNSSEC Lookaside Validation (DLV)”, November 2007 
 
Currently, various parts of the DNS namespace (the org domain, the gov domain, various ccTLDs) are 
being secured with DNSSEC. Once a Top Level Domain is signed, this simplifies signing of domains under 
it. Eventually the root of the entire DNS tree (“.”) will be signed, and this will unify DNSSEC for all 
domains. Until that time, there will be a need for DNS servers to obtain the root key material for any 
part of the DNS space for which you want to verify signatures. 
 
To review cryptography and PKI, see appendix A. DNSSEC depends heavily on digital signatures and 
public key digital certificates. You will need to understand these concepts to follow this discussion. 
Basically though, a digital signature is created by a cryptographic algorithm that produces a numeric 
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result that is derived from a specific plaintext (in this case, a single DNS resource record) and an 
asymmetric cryptography private key. These signatures are generated, encoded into ASCII characters, 
and inserted into the BIND configuration files after each resource record. When DNS data are retrieved, 
the digital signatures flow along with the resource records. The user’s resolving DNS server can verify 
the signature of any retrieved records by using the public key associated with the private key used to 
sign the records. Only if the signature verifies does the resolving server return the retrieved record(s) to 
the client. If records are compromised, they appear to not be available to the user. Eventually all client 
software will contain code to verify the DNSSEC signatures, in which case the resolving DNS server will 
just return the records and signatures to the client, which can notify the user that the records were 
found, but had been compromised (if the signature fails). 
 
Administrators using BIND directly (without a GUI front end) will find that DNSSEC is extraordinarily 
difficult to deploy, and requires massive time and effort and extensive knowledge of PKI to produce 
signed resource records, even using the public domain PERL scripts. A good DNS appliance (like 
InfoWeapons SolidDNS) can totally automate both the signing and validation processes, which vastly 
speeds up signing an entire domain, eliminates many possible errors, and requires little or no security or 
cryptographic expertise on the part of the DNS administrator. 
 
Ideally the private key used to sign records should be kept in an HSM (Hardware Storage Module), which 
the private key never leaves. The object to be signed is sent into the HSM, the private key is used to do 
the signing inside the HSM, and the result it retrieved and used. For highest security, the HSM should be 
certified by FIPS 140-2 or equivalent. FIPS is the U.S. Federal Information Processing Standards. FIPS 140-
2 is the “Security Requirements for Cryptographic Modules”, May 2001. Most commercially available 
HSMs are quite expensive, and their performance is very low compared to doing the same algorithm in 
software on modern processors (e.g. 1200 signatures per second for a very good HSM, as opposed to 
12,000 signatures per second in software on entry level hardware). Typically an HSM is needed only on a 
signing DNSSEC server.  
 
Digital signature verification (used in DNSSEC validation) uses only the public key corresponding to the 
private key used to create the signatures, so it can be done without an HSM, hence at much higher 
performance. The entry level model of SolidDNS can do about 30,000 queries per second without DNS 
verification, or about 27,000 per second with DNSSEC verification. Any DNS server can do DNSSEC 
validation, with no need for an HSM. 
 
DNSSEC is not strictly an IPv6 technology, and is equally applicable to IPv4. It is however being deployed 
at the same time as IPv6, and of course, it is important that any system deployed to support DNSSEC be 
able to sign and validate both IPv4 and IPv6 related resource records, and can support queries over both 
IPv4 and IPv6. DNSSEC is a very important part of the Second Internet. 
 
Essentially DNSSEC introduces trust into the DNS system. 
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Chapter 9 – IPv6 Related Organizations 
 

There are quite a few international and national level organizations involved in making this transition 
from the First Internet to the Second Internet work. This chapter lists the most prominent ones, but 
does not claim to be comprehensive. 
 
 
9.1 – Internet Governance Bodies 
 
The first group of organizations helps govern the Internet. There is no Internet Corporation, or any U.N. 
Internet Authority. The Internet is something quite different from the kinds of entities most people are 
familiar with. Its ownership and management is as decentralized and trans-national as the physical 
implementation of the Internet itself. For example, what country is the Internet located in? All of them! 
 
Anyone who really wants to can join one of these organizations, and the various groups address a 
variety of aspects of creating the standards that others use to build the hardware and software that 
make up the physical Internet. Other groups help manage resources, such as domain names, or Internet 
addresses. Others help resolve disputes and set policies that help the millions of owners of the various 
pieces of the Internet to get along and be willing to continue voluntarily connecting their networks to 
each other. Some national governments try to control or regulate the Internet, or the content on it, but 
the highly decentralized nature of it, and the difficulty of even pinning down what jurisdiction something 
on the Internet happened in, makes such control difficult at best. Any country whose people are 
forbidden access to the Internet are missing out on things that allow those who do have access to run 
circles around them competitively. It would be like a blind person and a fully sighted one having a sword 
fight, or a race between someone on foot, and someone in a Ferrari. It would all be over in seconds. 
China has had a very difficult time trying to maintain strict authoritarian communist rule, while enjoying 
the economic benefits of access to the Internet. They have tried to deploy what some call “the great 
firewall of China”, but there are many ways for people who understand the technology to gain access to 
those parts of it China doesn’t want their people to see. If they are really good they can do it without 
their government even being able to detect it. 
 
So who is in charge? The easy answers are no one or everyone. It is possible to identify some 
organizations that clearly are in charge of some aspects of the Internet. Most of them are heavily 
involved in trying to help the users of the Internet survive a looming disaster (the depletion of the IPv4 
address space), and migrate smoothly and safely to the wonderful new promised land, the Second 
Internet. 
 
 
9.1.1 – Internet Corporation for Assigned Names and Numbers (ICANN) 
 
ICANN was formed in 1998, as a not-for-profit public-benefit corporation. Participants all over the world 
help keep the Internet secure, stable and interoperable. ICANN does not try to control content on the 
Internet, stop spam or control access to the Internet. It does do the following things: 
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 Oversee the generic Top Level Domain (gTLD) names, and the country code Top Level Domain 
(ccTLD) names. The also oversee authorization of Internationalized Domain Names (IDNs) in 
various languages and scripts. 

 Oversee operation of the DNS Root Servers 

 Draw up contracts with each Domain Name Registry 

 Oversee IANA (Internet Assigned Numbers Authority) 

 Publish all corporate documents, bylaws, financial information, major agreements, policies, 
operating plan and strategic plan, at http://www.icann.org/en/documents/ 

 Hold monthly meetings of the ICANN board to address issues and set policy. The minutes of 
each meeting are made publically available at http://www.icann.org/en/minutes/. 

 
 
9.1.2 – Internet Assigned Numbers Authorities (IANA) 
 
One of the key organizations with regards to both the old IPv4 addresses and the new IPv6 addresses is 
the Internet Assigned Numbers Authority (IANA). You can find their website at www.iana.org. They do 
the following things: 
 

 Oversee the DNS Root Zone (creation and management of the generic TLDs and ccTLDs), as well 
as the int domain registry (for international organizations) and the arpa zone. The arpa TLD has 
several very important parts of DNS under it, such as the reverse zones for both IPv4 (in-
addr.arpa) and IPv6 (ip6.arpa), plus the ENUM E.164 zones (e164.arpa). Some parts of these 
reverse hierarchies can be delegated to ISPs or even to end-user organizations, but IANA is in 
charge of the overall structure. 

 Maintain the Interim Trust Anchor Repository (ITAR) for those parts of the Internet’s domain 
space that has already been signed with DNSSEC. This is a temporary role until such time as the 
root of the entire domain space is signed. This is where you can find the public keys needed to 
verify DNSSEC signatures for signed DNS zones. 

 Perform the top level management of IPv4 addresses. IANA allocates giant blocks of IPv4 
addresses (called “/8s”) with about 16.7 million addresses each, to the five Regional Internet 
Registries for the world, AfriNIC, APNIC, ARIN, LACNIC and RIPE NCC. As of this writing only 20 
“/8” blocks are left to allocate (about 7.8% of the original 256). As we reach the “end days” for 
IPv4, the IANA will be the first to run out. They already have a plan for this. When they get down 
to five remaining “/8” blocks, they will allocate one of those to each of the five RIRs, and then 
close shop (as far as allocation of IPv4 addresses goes). This will probably happen on or before 
September 2011, by best current estimates. The RIRs will probably run out within six months 
after that. When they’re gone, they’re gone. 

 Perform the top level management of IPv6 addresses. They perform the same basic allocation 
function with IPv6 addresses that they have done for many years with IPv4 address. The main 
difference is that there are a lot more IPv6 addresses. They allocate giant chunks of IPv6 
addresses to the RIRs as needed. It is unlikely that IANA will ever run out, so long as there is 
something recognizably TCP/IP. There are enough IPv6 addresses just in the 2000::/3 block 
marked for allocation for every human alive today to get over 5,000 of the standard allocation 
blocks, which are “/48”s. Each “/48” is large enough for the biggest organization on earth. 

 Manage AS numbers. AS stands for Autonomous Systems. It refers to complete networks at the 
top level of the routing hierarchy. Below the AS level, Interior Gateway Routing Protocols are 
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used (e.g. RIP2, EIGRP, etc). At the AS level, Exterior Gateway Routing Protocols are used (e.g. 
BGP4 and BGP4+). Each Autonomous System network has a unique number. They have been 
using 16 bit numbers (which allowed 65,536 possible ASes). Just like with IPv4, we are running 
out of AS numbers, so they are in the process of changing to 32 bit AS numbers. That is causing 
some issues, but nothing like the issues related to changing from 32 bit IPv4 addresses to 128 bit 
IPv6 addresses. There is no worldwide “32 bit AS Number” Forum, or any need for one. The 
people affected are fairly savvy technically, and are simply making the changeover quietly. 

 Allocate and assign IPv4 and IPv6 multicast addresses 

 Allocate and assign IPv6 anycast addresses 

 Allow people to reserve and register port numbers and other assigned numbers related to 
Internet protocols 

 
IANA is heavily involved in promoting the adoption of the IPv6 protocol throughout the world. They 
know how close they are to the bottom of the barrel with IPv4 addresses. They encourage the Regional 
Internet Registries to promote the adoption of IPv6, and each of them is doing this. 
 
 
9.1.3 – Regional Internet Registries (RIRs) 
 
There are five top level Registries directly below IANA, who set address allocation policy for their region 
and allocate blocks of both IPv4 and IPv6 addresses to ISPs and other interested parties. One way to 
obtain addresses is to join one of the registries and apply for addresses. Some regional registries charge 
for these, others provide them free. You can only obtain addresses from the registry in the region where 
you reside, or where the HQ of your organization is based.  
 
Each Regional Internet Registry provides the following services for Internet users in their part of the 
world: 
 

 IPv4 and IPv6 address space allocation, transfer and record maintenance 

 Autonomous System number allocation, transfer and record maintenance 

 Provide online directories of registration transaction information (WHOIS database) 

 Provide online information about routing (Internet Routing Registry) 

 Management of reverse DNS for addresses assigned by the RIR 

 Hold periodic meetings and elections 

 Perform education and training on relevant topics (such as IPv6) 

 Maintain policy discussions on e-mail lists, conduct public policy meetings, and publish policy 
documents on their website 

 
The three largest RIRs (ARIN, RIPE NCC and APNIC) are all aggressively advocating for adoption of IPv6. 
Like IANA, they know how many addresses are left, and how rapidly they are being allocated. They know 
that the “end times” for IPv4 allocation are near. All are strongly encouraging the ISPs and organization 
that obtain addresses from them to begin adoption of IPv6 now. If the major oil companies told people 
that there was not going to be any gas for new cars made after a certain date (less than two years off), 
there would be a mad scramble to create and sell cars that ran on something else. This is just as big a 
deal, and according to OECD, will have very serious economic consequences for every country and 
organization that has not prepared for the end of IPv4 allocations. 
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The five Regional Internet Registries and their coverage areas are: 
 
 
9.1.3.1 – American registry of Internet Numbers (ARIN) – www.arin.net 
 
ARIN provides services to Internet users in North America (including the United States, Canada plus 
many Caribbean and North Atlantic islands). 
 
ARIN runs an IPv6 Wiki at www.getipv6info.info. This site includes book reviews, self education, IPv6 
presentations and documents, survey results, planning information, management tools, etc. 
 

On 7 May 2007, the ARIN Board of Trustees passed the following resolution: 
 
RESOLUTION OF THE BOARD OF TRUSTEES OF ARIN ON INTERNET PROTOCOL 

NUMBERING RESOURCE AVAILABILITY 

 

WHEREAS, community access to Internet Protocol (IP) numbering Resources 

has proved essential to the successful growth of the Internet; and, 

 

WHEREAS, ongoing community access to Internet Protocol version 4 (IPv4) 

numbering resources cannot be assured indefinitely; and, 

 

WHEREAS, Internet Protocol version 6 (IPv6) numbering resources are 

available and suitable for many Internet applications, 

 

BE IT RESOLVED, that this Board of Trustees hereby advises the Internet 

community that migration to IPv6 numbering resources is necessary for 

any applications which require ongoing availability from ARIN of 

contiguous IP numbering resources; and, 

 

BE IT ORDERED, that this Board of Trustees hereby directs ARIN staff to 

take any and all measures necessary to assure veracity of applications 

to ARIN for IPv4 numbering resources; and, 

 

BE IT RESOLVED, that this Board of Trustees hereby requests the ARIN 

Advisory Council to consider Internet Numbering Resource Policy changes 

advisable to encourage migration to IPv6 numbering resources where 

possible. 

 

Implementation of this resolution will include both internal and 

external components. Internally, ARIN will review its resource request 

procedures and continue to provide policy experience reports to the 

Advisory Council. Externally, ARIN will send progress announcements to 

the ARIN community as well as the wider technical audience, government 

agencies, and media outlets. ARIN will produce new documentation, from 

basic introductory fact sheets to FAQs on how this resolution will 

affect users in the region. ARIN will focus on IPv6 in many of its 

general outreach activities, such as speaking engagements, trade shows, 

and technical community meetings. 
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9.1.3.2 –Réseaux IP Européens Network Coordination Centre (RIPE NCC) – www.ripe.net 
 
RIPE NCC provides services to Internet users in Europe, the Middle East and Central Asia. This includes: 
 

 Southwest Asia: Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Lebanon, Saudi 
Arabia, Syria, Turkey, UAE and Yemen 

 Central Asia: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan & Uzbekistan 

 Europe: Albania, Armenia, Austria, Belarus, Belgium, Bosnia-Herzegovina, Bulgaria, Croatia, 
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, 
Italy, Latvia, Lithuania, Macedonia, Moldova, Montenegro, Norway, Netherlands, Poland, 
Romania, Russia, Serbia, Slovakia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom 
and Yugoslavia 

 North America: Greenland 
 
RIPE NCC runs the “IPv6 Act Now” site (www.ipvactnow.org) with lots of information on IPv6 for small 
businesses, enterprise, ISPs and government. 
 
On October 26, 2007, RIPE NCC issued the following warning: 
 

During the RIPE 55 meeting in Amsterdam, the RIPE community agreed to 

issue the following statement on IPv4 depletion and the deployment of 

IPv6. 

 

"Growth and innovation on the Internet depends on the continued 

availability of IP address space. The remaining pool of unallocated 

IPv4 address space is likely to be fully allocated within two to four 

years. IPv6 provides the necessary address space for future growth. We 

therefore need to facilitate the wider deployment of IPv6 addresses. 

 

While the existing IPv4 Internet will continue to function as it 

currently does, the deployment of IPv6 is necessary for the development 

of future IP networks. 

 

The RIPE community has well-established, open and widely supported 

mechanisms for Internet resource management. The RIPE community is 

confident that its Policy Development Process meets and will continue 

to meet the needs of all Internet stakeholders through the period of 

IPv4 exhaustion and IPv6 deployment. 

 

We recommend that service providers make their services available over 

IPv6. We urge those who will need significant new address resources to 

deploy IPv6. We encourage governments to play their part in the 

deployment of IPv6 and in particular to ensure that all citizens will 

be able to participate in the future information society. We urge that 

the widespread deployment of IPv6 be made a high priority by all 

stakeholders." 

 
RIPE NCC issued another warning concerning IPv4 address space depletion, on April 10, 2008: 
 

Currently, 180 of 256 blocks of “/8” have already been allocated. Of 

the remaining 76, 35 are already reserved for the Internet Engineering 
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Taskforce (IETF) and the remaining 41 blocks are held in the Internet 

Assigned Numbers Authority (IANA) pool for future allocation to the 

RIRs. 

 

As IPv6 provides the necessary address space for future growth, RIPE 

NCC is urging business and government leaders to ease the path for 

wider deployment of IPv6 addresses. Failure to adopt these new 

resources could mean a slowing in the pace of Internet innovation. 

 

“Now is the time to recognize that sustainable growth of the IPv4-based 

Internet is coming to an end, and that it is time to move on, with IPv6 

ready as the successor. 

 

“In order to sustain the impressive speed of Internet innovation and 

ensure a healthy Internet economy for the future, we recommend that 

content providers make their services available over IPv6,” comments 

Axel Pawlik, Managing Director at RIPE NCC.   

 

“We view governments as key players in Internet growth and urge them to 

play their part in the deployment of IPv6 and in particular to lead by 

example in making content available in IPV6. Ultimately, we urge that 

the widespread deployment of IPv6 be made a high priority by all 

stakeholders." 

 

When CIOs make firm decisions to deploy IPv6, the process is fairly 

straightforward. Staff will have to be trained, management tools will 

need to be enhanced, routers and operating systems will need to be 

updated, and IPv6-enabled versions of applications will need to be 

deployed. All these steps will take time. 

 

The move to IPv6 will provide billions of further addresses through 

128-bit addressing, which allows 50 billion, billion addresses for 

every person on the planet. Islands of IPv6 are already in use, but 

RIPE NCC argues that infrastructure support must be addressed in time 

for IPv6 to fulfill its predicted role as the catalyst for the next 

stage of Internet development. 

 

Pawlik concludes: “We have well-established, open and widely supported 

mechanisms for Internet resource management and we‟re confident that 

our Policy Development Process meets and will continue to meet the 

needs of all Internet stakeholders through the period of IPv4 

exhaustion and IPv6 deployment. The immediate challenge lies in making 

content available in IPV6 using the processes and mechanisms already 

available to ensure that service providers and content providers build 

adequate experience and expertise in good time.” 

 
Note that this warning was almost exactly two years ago, and at that time 41 “/8” blocks remained. As 
of April 15, 2010, only 20 “/8” blocks remain unallocated.  
 
 
9.1.3.3 – Asia Pacific Network Information Center (APNIC) – www.apnic.net 
 
APNIC provides service to Internet users in: 
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 South Asia: Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka 

 Eastern Asia: China, North Korea, Hong Kong, Japan, Macau, Mongolia, South Korea and Taiwan 

 Southeast Asia: Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand 
and Vietnam 

 Australia and New Zealand 

 Oceania:  various islands in Polynesia, Melanesia and Micronesia 
 
APNIC is currently running a program called “Kickstart your IPv6”, in which anyone that owns or obtains 
an IPv4 address allocation from APNIC can get a free block of IPv6 addresses. If their IPv4 block is less 
than a “/22”, then the IPv6 block is a “/48”. For IPv4 blocks from “/22” and up, the free IPv6 block is a 
“/32” (this is 4 billion times 4 billion times the size of the entire IPv4 address space). You could also look 
at this as 65,536 “/48” blocks. These addresses are not tied to any ISP, and can be routed from 
anywhere. There is no demonstration of need required for obtaining the IPv6 address block. 
 
APNIC also runs an IPv6 resource site at icons.apnic.net/display/IPv6/Home. The name “icons” stands for 
Internet Community of Online Networking Specialists. 
 
 
9.1.3.4 – Latin American and Caribbean Network Information Center (LACNIC) – www.lacnic.net 
 
LACNIC was started in 2002. It provides services to Internet users in: 
 

 North America: Mexico 

 Central America: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama 

 South America: Argentina, Belize, Bolivia, Brazil, Chile, Columbia, Ecuador, French Guiana, 
Paraguay, Peru, Uruguay & Venezuela 

 Caribbean Islands: Aruba, Barbados, Cayman Islands, Cuba, Dominica, Dominican Republic, 
Grenada, Haiti, Jamaica, and various smaller islands. 
 

LACNIC runs an IPv6 resource site at portalipv6.lacnic.net/en/portal-ipv6-2 
 
 
9.1.3.5. – Africa Region (AfriNIC) – www.afrinic.net 
 
AfriNIC provides services for Internet users in the entire African continent. It began in April 2005. 
 
They run an IPv6 resource center at www.afrinic.net/IPv6, and an IPv6 virtual lab at 
www.afrinic.net/projects/cvl.htm. This is a test network with public access, with primarily Cisco 
equipment. 
 
 
9.1.4 – The Number Resources Organization (NRO) – www.nro.net 
 
NRO was formed in October 2003 by the four Regional Internet Registries that existed at the time, to 
formalize their co-operative efforts. Its goal is to protect the unallocated Number Resource pool, to 
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promote and protect the bottom-up policy development process, and to act as a focal point for Internet 
community input into the RIR system. 
 
Recently NRO issued the following statement, when the remaining IPv4 address pool dropped below 
10%: 
 

This is a key milestone in the growth and development of the global 

Internet,” noted Axel Pawlik, Chairman of the NRO. “With less than 10 

percent of the entire IPv4 address range still available for allocation 

to RIRs, it is vital that the Internet community take considered and 

determined action to ensure the global adoption of IPv6. The limited 

IPv4 addresses will not allow us enough resources to achieve the 

ambitions we all hold for global Internet access. The deployment of 

IPv6 is a key infrastructure development that will enable the network 

to support the billions of people and devices that will connect in the 

coming years,” added Pawlik. 

 
 
9.1.5 – Internet Architecture Board (IAB) – www.iab.org 

“The IAB is chartered both as a committee of the Internet Engineering Task Force (IETF) and as 
an advisory body of the Internet Society (ISOC). Its responsibilities include architectural 
oversight of IETF activities, Internet Standards Process oversight and appeal, and the 
appointment of the RFC Editor. The IAB is also responsible for the management of the IETF 
protocol parameter registries.” 

 
9.1.6 –Internet Engineering Task Force (IETF) – www.ietf.org 
 

“The mission of the IETF is to make the Internet work better by producing high quality, relevant 
technical documents that influence the way people design, use, and manage the Internet.” 
 
The IETF: 
 

 Runs numerous working groups on technical topics relevant to the Internet, that are the 
main source of RFCs 

 Oversees the standards process 

 Maintains the Internet Drafts and the RFC Pages 

 Holds periodic meetings (Fall, Spring and Summer, each year) 

 Runs various mailing lists, which anyone can subscribe to 
 
 
9.1.7 – Internet Research Task Force (IRTF) – www.irtf.org 
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“To promote research of importance to the evolution of the future Internet by creating focused, 
long-term and small Research Groups working on topics related to Internet protocols, 
applications, architecture and technology.” 
 
 
9.1.8 – Internet Society (ISOC) – www.isoc.org 

“The Internet Society (ISOC) is a nonprofit organisation founded in 1992 to provide leadership 
in Internet related standards, education, and policy. With offices in Washington D.C., USA, and 
Geneva, Switzerland, it is dedicated to ensuring the open development, evolution and use of 
the Internet for the benefit of people throughout the world. 

“The Internet Society provides leadership in addressing issues that confront the future of the 
Internet, and is the organisational home for the groups responsible for Internet infrastructure 
standards, including the Internet Engineering Task Force (IETF) and the Internet Architecture 
Board (IAB). 

“The Internet Society acts not only as a global clearinghouse for Internet information and 

education but also as a facilitator and coordinator of Internet-related initiatives around the 

world. For over 15 years ISOC has run international network training programs for developing 

countries and these have played a vital role in setting up the Internet connections and networks 

in virtually every country connecting to the Internet during this time. 

“The Internet Society has more than 100 organisational and more than 28,000 individual 
members in over 80 chapters around the world.” 

 
9.2 – IPv6 Forum Groups 
 
There are a number of groups organized specifically to advocate for the adoption of IPv6, given the 
importance of the issue. There is an international umbrella group, called the IPv6 Forum, chaired by Latif 
Ladid, who wrote the foreword to this book. Their website is at www.ipv6forum.org.  
 
 
9.2.1 – Local IPv6 Forum Chapters 
 
There are local chapters of the IPv6 Forum in many countries. Some of these national groups use the 
term Forum (e.g. IPv6 Forum Downunder, at www.ipv6forum.org.au). Some use the term Task Force 
(e.g. North American IPv6 Task Force, at www.nav6tf.org). Some use the term Council (e.g. The German 
IPv6 Council, at www.ipv6council.de). Altogether there are currently 58 national or regional groups 
under the International IPv6 Forum. These groups advocate within their own country or region for the 
adoption of IPv6, and put on conferences usually called IPv6 Summits. There are links to all of the 
chapters on the IPv6 Forum national site (www.ipv6forum.org), as well as announcements about coming 
summits and other IPv6 related events. 
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9.2.2 – IPv6 Ready Logo Program 
 
Affiliated with the IPv6 Forum is a group whose goal is to do testing of IPv6 equipment and applications, 
ISPs who offer IPv6, and websites that are available over IPv6. This testing and issuing of certifications is 
done under the IPv6 Ready Logo Program. Their website is at www.ipv6ready.org. There are three main 
parts to the IPv6 Ready Program: Products, ISP and website. 
 
 
9.2.2.1 – IPv6 Ready Product Testing and Certification 
 
Product Testing uses test suites developed by TAHI (part of the Japan WIDE project) and IPv6 ready Test 
Labs. This is overseen by the IPv6 Ready Logo Committee (v6LC). There are both Phase 1 (“Silver”) tests, 
which verify behavior of the MUST clauses of all relevant RFCs, and Phase 2 (“Gold”) tests, which verify 
behavior of both the MUST and the SHOULD clauses of all relevant RFCs. The hundreds of products that 
have passed these tests are published on the IPv6 Ready site at: 
 
 http://cf.v6pc.jp/logo_db/approved_list_ph1.php 
 http://cf.v6pc.jp/logo_db/approved_list_ph2.php 
 
There are several categories of test suites currently. The IPv6 Ready Logo can be obtained for passing 
the Core Protocols tests, which includes both Conformance and an Interoperability tests. There are 
advanced tests in the following areas: 
 

 IPsec – End-Node and Security Gateway 

 IKEv2 – End-Node and Security Gateway 

 Mobile IPv6 – Correspondent Node, Home Agent and Mobile Node 

 NEMO – Home Agent and Mobile Router 

 DHCPv6 – Client, Server and Relay Agent 

 SIP – UA, Endpoint, B2BUA, Proxy, registrar 

 Management (SNMP-MIBs) – Agent and Manager 

 Multicast Listener Discovery protocol (MLDv2) 
 
The current test sites include: 
 

 BII: Beijing Internet Institute (Peoples Republic of China) 

 CHT-TL: ChungHwa Telecom Labs (Taiwan) 

 IRISA (European Union) 

 IWC: InfoWeapons Corporation (Philippines) 

 JATE: Japan Approvals Institute for Telecommunications Equipment (Japan) 

 TTA: Telecommunication Technology Association (Korea) 

 UNH-IOL: University of New Hampshire InterOp Lab (United States) 
 
 
9.2.2.2 – IPv6 Enabled ISP and Website Certification 
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Information on how an ISP or a website can be certified as delivering IPv6 compliant service is available 
at: 
 
 www.ipv6forum.com/ipv6_enabled 
 
The ISP certification process was created by the Beijing Internet Institute (BII). There is currently a basic 
level. The advanced level will be introduced shortly. The list of certified ISPs is available at: 
 
 www.ipv6forum.com/ipv6_enabled/isp/approval_list.php 
 
Notably, Malaysia has taken this even further, and has three levels of ISP certification, which has been 
mandated by the Malaysian government. 
 

 Phase 1 – Basic network connectivity tests 

 Phase 2 – Interconnectivity tests 

 Phase 3 – Commercial & advanced network services 
 
12 ISPs have already passed the first two levels, and will shortly pass the third. 
 
For websites, again there is a basic level currently available and an advanced level coming soon. The list 
of certified websites is available at: 
 
 http://www.ipv6forum.com/ipv6_enabled/approval_list.php 
 
 
9.3 – Informal IPv6 Network Administration Certification 
 
Hurricane Electric, in addition to providing free tunneled service via 6in4, 6to4 and Teredo, has put 
together an informal, self-administered certification program for IPv6 network administration. This 
covers aspects of IPv6 technology and implementation on various platforms (Linux, Windows, Cisco 
routers, etc). There are several levels. At each succeeding level, you must answer harder questions. 
Several levels involve accomplishing actual network administration tasks, such as deploying an IPv6 
compliant e-mail server. To obtain that level, you must exchange an e-mail with their IPv6 e-mail server. 
The site is available at ipv6.ne.net/certification/. There are multiple levels, including Newbie, Explorer, 
Enthusiast, Administrator, Professional, Guru and Sage. 
 
This is not a formal program, like Microsoft or Cisco certification, but it is free, and very educational. I 
have already qualified at the top level, as an IPv6 Sage. Here is my very cool certification badge: 
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9.4 – WIDE Project, Japan 
 
Japan was an early leader in IPv6, and a consortium of Japanese IT companies headed by Professor Jun 
Murai has done some very important work that has significantly advanced the state of IPv6. These 
include reference implementations of the IPv6 stack for BSD (Kame) and Linux (USAGI), the test suites 
for the IPv6 Ready testing program (TAHI). They also provide IPv6 service to many developing countries 
in the region, such as the Philippines. Their website is available at www.wide.ad.jp. 
 
The Kame project completed its task, and has been discontinued, but its website (www.kame.net) has 
been left up, complete with its famous turtle logo (kame is Japanese for turtle). If you connect over IPv4, 
the turtle just sits there. If you connect over IPv6, the turtle dances. In the early days of IPv6, it was a 
rite of passage to verify you had accomplished IPv6 connectivity by watching the Kame dance. 
 
 
9.5 – IPv6.org 
 
  

http://ipv6.he.net/certification/scoresheet.php?pass_name=lehughes


220 

 

Chapter 10 – IPv6 Projects 
 
 
There are a number of possible projects you can do for free, given the information in this book and 
various open source components (or evaluation versions of Microsoft products) readily available on the 
Internet.  
 
It is possible to do the open source implementations based on FreeBSD, NetBSD, OpenBSD or various 
Linux flavors. Use the platform you are most familiar with. The BSD variants have a powerful dual stack 
packet filtering component called pf. This can be used to add a host-based firewall to any project (to 
block access via anything but the desired protocols), or even to build a multi-NIC router or firewall with 
complex rules. In Linux, the equivalent component is called NetFilter / IP Tables. The BSD and Linux 
packet filtering components have roughly the same functionality, but totally different deployment and 
configuration schemes. Both have one part that lives in the Kernel Space, and one part that lives in User 
Space. The configuration of the TCP/IPv4 and TCP/IPv6 stacks is done in different ways, but the 
functionality is almost the same. Both the BSD and Linux IPv6 implementations have passed IPv6 Ready 
Gold testing (at least one release, possibly not the most recent). For the most part, other open source 
components (Apache, Postfix, Dovecot, etc.) are pretty much the same regardless of what underlying 
platform is used. 
 
Microsoft Windows Vista, Windows 7, Windows Server 2008 SP1 and Exchange 2007each has excellent 
support for IPv6 and dual-stack operation. You can put together a viable testbed network with just 
Microsoft products if you like (except for the gateway router/firewall), or all with just open source, or 
mix and match. It all depends on your expertise and job requirements. 
 
Some open source components (e.g. SMTP MTA, POP3/IMAP mail retrieval agents) are available in a 
variety of popular implementations (Postfix, QMail, EXIM, Dovecot, Cyrus IMAP, etc.). Pretty much all of 
these have support for IPv6, but in some cases, finding the specifics to actually deploy these in dual 
stack mode may be difficult to locate. I will recommend components that I have actually deployed and 
verified dual-stack operation, but if you happen to prefer a different component, chances are the 
necessary configuration information is available online somewhere. 
 
If you are not looking for an educational experience, but just want to deploy working servers, you will be 
able to purchase “kits” from our website that have detailed instructions for deployment of the various 
servers listed in this projects chapter, using one possible set of open source components, along with 
configuration and testing procedures. This should help organizations (like universities) that are short on 
funds, but long on open source and network expertise to get started with IPv6 test bed networks. These 
are not recommended for mission critical production deployments in commercial organizations that 
require 24x7 support, high availability, simple GUI management, etc. There are good commercial 
products available from reputable companies that have all of these features and more. Even for such 
organizations, these kits may be enough (together with this book) to start climbing your own IPv6 
learning curve and get some hands-on experience actually running real services dual stack. 
 
Each project has a basic level of functionality described, and various extensions that can add more 
functionality (e.g. a basic router can be enhanced by adding packet filtering and/or proxies). 
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10.1 – Project 1: A Standalone Dual Stack Node in an IPv4 Network, using Tunneled Service 
 
This is the simplest lab, and does not require a working dual-stack network. Each standalone node will 
be creating its own tunnel and the only IPv6 access to or from that node will be to or from the Second 
Internet via the tunnel. Local access will still be IPv4-only. 
 
Freenet6 Tunneled Service using TSP 
 
TSP tunnels (e.g. from Freenet6) will work even behind NAT, using NAT traversal with UDP 
encapsulation. If you do have a real IPv4 address (not behind any NAT), it will negotiate simple 6in4 
tunneling. In either case, TSP requires client authentication (you must sign up at their site for 
credentials). For details, see www.gogo6.com and click on Freenet6. You can download their TSP client 
for a variety of platforms, including Windows, FreeBSD, Linux, etc. Follow their directions to download 
the appropriate TPC client, then install and configure it. This will typically even work from hotels. Some 
networks force your browser to use a web proxy, which usually is IPv4-only. In this case, web access will 
not work, but other protocols will typically work. If you can ping IPv6 addresses, but not surf to IPv6 
websites, probably something is forcing your browser to use an IPv4-only web proxy. One good use for a 
standalone node is to test access to publically accessible servers in your testbed network from 
“outside”.  
 
As of this writing, Freenet6 includes their gogoclient in binary for Windows 32 bit, Windows 64 bit, and 
in source code for Linux, UNIX, Mac OS or BSD. Download the gogoclient User Guide and follow the 
directions. 
 
Freenet6 has recently added DS-Lite virtual ISP service, plus a DS-Lite client, for Windows 32-bit and 
Windows 64-bit. 
 
By default, with Freenet6 you get a single IPv6 address (“/128”), but you can request a “/64” or even a 
“/56” if your node can act as a gateway and route traffic to one or more subnets with multiple internal 
nodes. 
 
Hurricane Electric 6in4 Tunneled Service 
 
For Hurricane Electric, apply for an account at www.he.net (tunnel broker link). You will need a real IPv4 
address (which accepts ping). This address cannot be behind NAT (even 1 to 1). Enter your IPv4 address 
as requested (e.g. xxx.52.125.246). The tunnel broker will create a tunnel and show you the details, for 
example: 
 
Server IPv4 address:   74.52.1094.74 

Server IPv6 address:   2001:470:1f04:b6d::1/64 

Client IPv4 address:   12.34.56.246 

Client IPv6 address:   2001:470:1f04:b6d::2/64 

 

Anycasted IPv6 Caching Nameserver  2001:470:20::2 

Anycasted IPv4 Caching Nameserver  74.82.42.42 

 

Routed /48     (click to allocate one) 

Routed /64:     2001:470:1f05:b6d::/64 
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With 6in4 tunneling, there is no client to download and install, the functionality is already in all 
supported platforms. All you need to do is configure it (as described below in labs 3 to 7 for various 
platforms). 
 
By default, Hurricane Electric gives you a “/64” block but you can request a “/48” block if you have more 
than one subnet. Hurricane Electric’s tunneling can be used to get IPv6 service for a single node, but 
more typically this would be used in a gateway node (router or firewall) to provide IPv6 service for one 
or more internal subnets. 
 
Once the Tunnel is Set Up 
 
Both of these virtual ISPs provide caching dual stack DNS service for client resolution, but you cannot 
add your own domain name or resource records into their DNS server. Hurricane Electric has recently 
added Free hosted dual-stack DNS service in addition to their caching DNS service for exactly this. In a 
later lab we will make use of this service. 
 
Once the client is installed and configured, try pinging some IPv6 addresses (e.g. ipv6.google.com or 
www.ipv6.org – on FreeBSD or Linux remember to use ping6, not ping). If this works, try surfing to 
www.ipv6.org and see if it reports your IPv6 address. If surfing reports an IPv4 address, but pinging the 
IPv6 address works, likely your browser is being forced to use an outgoing IPv4-only proxy. This often 
happens in hotels. 
 
On the BSD variants, the tunnel will appear as a pseudo interface named gifx (where x is a digit like 0). 
You can use ifconfig or other commands on pseudo interfaces just like real ones (such as bge0). 
 
If you get a real IPv6 address on www.ipv6.org, welcome to the future! Start exploring the Second 
Internet. 
 
 
10.1.1 – Standalone Node Lab 1: Freenet6 on Windows 
 
Apply for an account at www.gogo6.com (Freenet6 tab), then download and install the TSP client for 
Windows 32-bit or Windows 64-bit (depending on your version of Windows). Download the gogoclient 
User Guide and follow directions. 
 
10.1.2 – Standalone Node Lab 2: Freenet6 Using BSD or Linux 
 
Apply for an account at www.gogo6.com (Freenet6 tab), then download the source code for the Linux, 
UNIX, Mac OS or BSD platforms, then build and install it (download and read the gogoclient User Guide 
for details).  
 
10.1.3 – Standalone Node Lab 3: Hurricane Electric on Windows  
 
Given the tunnel creation above, in Windows Vista, Windows 7 or Windows Server 2008, you would 
need to issue the following commands (substitute the addresses for your network and tunnel): 
 
netsh interface teredo set state disabled 
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netsh interface ipv6 add v6v4tunnel IP6Tunnel 12.34.56.246 72.52.104.74 

netsh interface ipv6 add address IP6Tunnel 2001:470:1f04:b6d::2 

netsh interface ipv6 add route ::/0 IP6Tunnel 2001:470:1f04:b6d::1 

 
10.1.4 – Standalone Node Lab 4: Hurricane Electric Using FreeBSD (since v4.4) 
 
Given the tunnel creation above, you would need to issue the following commands (substitute the 
addresses for your network and tunnel): 
 
ifconfig gif0 create 

ifconfig gif0 tunnel 12.34.56.246 72.52.104.74 

ifconfig gif0 inet6 2001:470:1f04:b6d::2 2001:470:1f04:b6d::1 prefixlen 128 

route -n add -inet6 default 2001:470:1f04:b6d::1 

ifconfig gif0 up 

 
10.1.5 – Standalone Node Lab 5: Hurricane Electric on OpenBSD 
 
Given the tunnel creation above, you would need to issue the following commands (substitute the 
addresses for your network and tunnel): 
 
ifconfig gif0 tunnel 12.34.56.246 72.52.104.74 

ifconfig gif0 inet6 alias 2001:470:1f04:b6d::2 2001:470:1f04:b6d::1 prefixlen 128 

route -n add -inet6 default 2001:470:1f04:b6d::1 

 
10.1.6 – Standalone Node Lab 6: Hurricane Electric on NetBSD / MacOS 
 
Given the tunnel creation above, you would need to issue the following commands (substitute the 
addresses for your network and tunnel): 
 
ifconfig gif0 create 

ifconfig gif0 tunnel 12.34.56.246 72.52.104.74 

ifconfig gif0 inet6 2001:470:1f04:b6d::2 2001:470:1f04:b6d::1 prefixlen 128 

route -n add -inet6 default 2001:470:1f04:b6d::1 

 
10.1.7 – Standalone Node Lab 7: Hurricane Electric Using Linux net-tools 
 
Given the tunnel creation above, you would need to issue the following commands (substitute the 
addresses for your network and tunnel): 
 
ifconfig sit0 up 

ifconfig sit0 inet6 tunnel ::72.52.104.74 

ifconfig sit1 up 

ifconfig sit1 inet6 add 2001:470:1f04:b6d::2/64 

route -A inet6 add ::/0 dev sit1 
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10.2 – Project 2: Dual Stack Router with Router Advertisement Daemon 
 
This project is an ideal starting point for a test bed network. Any network with IPv6 clients requires a 
source of Router Advertisement messages, and either direct (or more likely, tunneled) IPv6 service. 
There are several sources of free tunneled IPv6 service today, including a large block of IPv6 addresses. 
There are tunnel clients available for each source of free tunneled service. You may wish to try more 
than one of the free services to see which works best for you, depending on where in the world you are 
deploying your test bed network.  
 
It is possible to build a router starting with vanilla FreeBSD, OpenBSD or Linux. Each has built-in packet 
forwarding for both IPv4 and IPv6, and support for multiple NICs. Install the NICs before starting the 
operating system install, and tell it to make the system a gateway. This should enable the necessary 
packet forwarding, but you can always specifically enable it later. Details of doing this vary from one OS 
to another, search for “enable packet forwarding” together with your operating system name (e.g. 
“FreeBSD”) in Google. All OSes also support creating static routes, default gateways, etc. The BSD 
variants have a powerful packet filtering component called pf that will allow you to turn your router into 
a firewall. Linux has similar components, called Netfilter and IPTables. The packet filtering components 
from both Operating Systems support IPv6. Creating a router (and even better a firewall) like this is 
highly educational (primarily about FreeBSD or Linux), and would make a great class project. However, if 
you are more interested in the end result than in the education, while still learning quite a bit about 
IPv6, there are several good alternatives. 
 
One simple alternative is to buy a D-Link DIR-615 wireless router. It has support for dual stack, bringing 
in tunneled service, and IPv6 routing. It does not have any support for IPv6 packet filtering. There will be 
more and more such products hitting the market over the next two years. You may need to update the 
DIR-615 firmware to the latest version, as there is a lot of older stock in the channel that has pre-IPv6 
firmware. The DIR-615 has supports both wireless clients and wired clients (there is a 4 port 10/100 
switch included for wired clients, which you can chain out to a larger switch if needed).  
 
Another alternative, somewhat more difficult, is to obtain one of various commercial SOHO routers or 
wireless routers for which open source replacement firmware is available. An example of this is the 
Linksys WRT-54G wireless router. Search google for “DD-WRT” for details. There are actually quite a few 
variants of the firmware for these devices, many of which support IPv6. Be very careful to research the 
exact hardware versions supported, as there are quite a few distinct devices sold under names like WRT-
54G. This requires you to update the supplied vendor firmware with a completely different version, and 
the vendor will no longer provide support for your device. These units are typically available in the USD 
50 to USD 100 price range, so this is an inexpensive way to get a dual stack gateway. There is quite a bit 
of information and support in online forums, but it is assumed that you have more technical knowledge 
and capability than a typical home user. Any of these units with replacement firmware will probably 
suffice, but may be somewhat limited in terms of tunnel and firewall rule support. 
 
The third alternative is to create either a fairly complete dual stack firewall using m0n0wall. This is based 
on FreeBSD 6.2, but you download a bootable ISO image which installs everything, including a stripped 
down FreeBSD OS, all routing and packet filtering components, a web server, and a fairly sophisticated 
management GUI. This is what I recommend, as the result has quite good features and performance, but 
it can still be created at very low cost. Their website is at m0n0wall.ch (note those are zeroes not oh’s). 
There is quite a bit of information on their site on various options for hardware, and on configuration. 
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There are several competitors to m0n0wall, such as pfsense (also based on FreeBSD), and IPcop (based 
on Linux) but most do not currently include support for IPv6. Once you install one of these, you will not 
typically be interacting with the OS anyway (just using a point and client GUI), so it doesn’t really matter 
which OS it is based on. m0n0wall uses the older FreeBSD packet filter (ipfw), while pfsense uses the 
newer packet filter (pf). Otherwise they are similar (except that pfsense does not currently support 
IPv6). 
 
There are some fairly inexpensive “embedded” hardware platforms that can be used to deploy 
m0n0wall, such as ones from Soekris Engineering (www.soekris.com). m0n0wall even has downloadable 
images ready to put on a hard disk or even a Compact Flash card for various models of the Soekris box. 
This makes a highly portable, lightweight unit that is great for teaching, demos, etc. Since it includes 
various tunneling mechanisms, you can typically set it up to bring in IPv6 anywhere IPv4 service is 
available (hopefully including at least one “real” globally routable IPv4 address). Versions with anywhere 
from 3 to 7 NICs are available. If you don’t want to hassle with a Soekris box, virtually any generic PC will 
work just fine, so long as it has at least two NICs. If performance is an issue, it is highly recommended 
that you use Intel Gigabit NICs, which are readily available. For typical Internet speeds, even an old 
decommissioned 486 or Pentium I/II/III box and 10/100 NICs will work just fine. If you are linking two or 
more gigabit networks with this gateway, use Intel gigabit NICs. There is also support for various 
wireless NICs, if you want to also support wireless dual-stack clients. 
 
If this project is too complicated for you, you may wish to purchase a commercial dual stack router or 
firewall (such as InfoWeapons’ SolidWall) and move on to the other projects. If you try to use a Cisco or 
Juniper router, be aware you may have to pay quite a bit extra for IPv6 support (in Cisco’s case, you 
would need “Advanced IP Services” for IOS, which costs almost as much as the router). In a class 
situation, the instructor or lab assistants may wish to install and deploy this component for the students. 
 
When you complete the labs in section 10.2, you will have made a great start on your complete Dual-
Stack testbed network. We will add to that network in the following labs. Note that you will not be 
installing anything else on your router/firewall. You will need an additional internal node running 
FreeBSD for the remaining labs, configured for Dual-Stack operation. 
 
 
10.2.1 – Router Lab 1: IPv4-only m0n0wall Installation and Configuration 
 
This first lab creates a firewall that supports an IPv4-only LAN behind a single globally routable IPv4 
address, with RFC 1918 private IPv4 addresses for internal nodes. We will add in support for bringing in 
tunneled IPv6 service in a later lab, making the network behind the firewall Dual-Stack. 
 
Obtain a generic PC, possibly installing additional NICs (see comments above). You will need at least two 
NICs, although you can support as many as you have room for (for DMZ, etc). m0n0wall only uses a very 
small amount of hard disk (<50MB), but it cannot partition the drive for multiple operating systems, so 
don’t waste most of a nice 500GB drive on this. You should use a good quality drive, as the failure of an 
old (well used) drive will bring down your firewall. You can go to some extra trouble and put the firewall 
image in a Compact Flash card, but it will need something (floppy, USB thumb drive, etc) to save its 
configuration files onto. Using a CF card will make your firewall very reliable. The m0n0wall code will 
actually load into RAM and run there, to avoid burning out any bits in the CF card. Your PC should have a 
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CDROM/DVD drive, but this can be provided using an external drive via USB (assuming your PC can boot 
from this). You will also need a video interface, a video display and a keyboard, but only during 
installation. Once m0n0wall is installed, these can be removed and your PC will operate as a “headless” 
node (no monitor, keyboard or mouse). All interaction with it is done via the network interface. 
 
Step 1 – Get the m0n0wall installation media. 
 

Download the “generic PC” ISO image (e.g. file cdrom-1.32.iso) from the m0n0wall.ch website, 
and burn it onto a writeable CDROM. 

 
Step 2 – Setup your PC for installing m0n0wall. 
 

Configure the ROM BIOS in your PC to not use ACPI, to work with an OS that does not support 
Plug and Play, and to boot from CD/DVD before booting from hard disk.  

 
Step 3 – Boot from the m0n0wall install CDROM. When it finishes loading, you will see a menu: 
 

LAN IP address: 192.168.1.1 

 

Port configuration: 

 

LAN -> sis0 

WAN -> sis1 

 

m0n0wall console setup 

********************** 

 

1) Interfaces: assign network ports 

2) Set up LAN IP address 

3) Reset webGUI password 

4) Reset to factory defaults 

5) Reboot system 

6) Ping host 

7) Install on Hard Drive 

 

Choose option 7, Install on Hard Drive. It will list all available hard drives, and let you choose 
which one to use. For example: 
 
 Valid disks are: 

 

  ad0 MAXTOR STM 3320620A 3.AAD   298.09 GB  

 

 Enter the device name you wish to install onto: ad0 

 
It will warn you that this will overwrite the current contents of that drive.  
 
 Warning: ... 

 

 The firewall will reboot after installation. 

  

 Do you want to proceed? (y/n) y 
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When you type “y” (followed by Enter), it will write the firmware to the selected hard disk. 
When it is done, remove the install CDROM and allow the PC to reboot.  
 

Step 4 –Install m0n0wall. 
 

Connect a network cable from a powered-on switch to the m0n0wall NIC you want to use for 
LAN, so you can identify it in the next step (as being in the “up” state). It will display the console 
setup menu again (now minus option 7). For example: 
 
 LAN -> sis0 

 WAN -> sis1 

 

 m0n0wall console setup 

 ********************** 

 

 1) Interfaces: assign network ports 

 2) Set up LAN IP address 

 3) Reset webGUI password 

 4) Reset to factory defaults 

 5) Reboot system 

 6) Ping host 

 

Select option 1, Interfaces: assign network ports. It will list the available interfaces. In my case, 
the first NIC (vr0) was a D-Link PCI 10/100 PCI NIC I installed. The second NIC (vr1) was on the 
motherboard. The one named vr0 above is in the UP state, so that is the one to specify for 
“LAN”. Note: your interface names may differ from mine (the name depends on the FreeBSD 
driver used, which is determined by the NIC type). Do not install VLANs now. 
 
 Valid interfaces are: 

  

 vr0 00:15:e9:80:b3:b1 (up) VIA VT6105 Rhine III 10/100baseTX 

 vr1 00:15:82:2e:b4:a5  VIA VT6102 Rhine II 10/100baseTX 

 

 Do you want to set up VLANs now? (y/n) n 

  

 Enter the LAN interface name or „a‟ for auto-detection: vr0 

  

 Enter the WAN interface name or „a‟ for auto-detection: vr1 

  

 Enter the Optional-1 interface name or „a‟ for auto-detection: 

 

 The interfaces will be assigned as follows: 

 

  LAN -> vr0 

  WAN -> vr1 

 

 The firewall will reboot after saving changes 

 Do you want to proceed? (y/n) y 

 

 The firewall is rebooting now. 

 
After it reboots, it will present the console setup menu again (now with your port assignments): 
 
 LAN IP address: 192.168.1.1 

 

 Port configuration: 
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 LAN -> vr0 

 WAN -> vr1 

 

 m0n0wall console setup 

 ********************** 

 

 1) Interfaces: assign network ports 

 2) Set up LAN IP address 

 3) Reset webGUI password 

 4) Reset to factory defaults 

 5) Reboot system 

 6) Ping host 

 
Choose option 2: Set up LAN IP address. Follow the interaction below, replacing 192.168.1.1 
with your preferred LAN IPv4 address, and the number of bits in the subnet mask (e.g. 24 for 
255.255.255.0). Enable the DHCPv4 server, and provide it with a reasonable range of available IP 
addresses, in the same subnet as the LAN IP address. The remainder of the steps assume you 
used the default LAN IP address. For example: 
 
 Enter the new LAN IP address: 192.168.1.1 

 Enter the new LAN subnet bit count: 24 

 Do you want to enable the DHCP server on LAN (y/n) y 

 Enter start address of client address range: 192.168.1.101 

 Enter end address of client address range: 192.168.1.200 

 

 The LAN IP address has been set to 192.168.1.1/24 

 You can now access the webGUI by opening the following URL 

 in your browser 

 

  http://192.168.1.1 

 

 Press ENTER to continue. 

 

Step 5 – Connect remaining cables and configure client PC. 
 

You are done with the installing m0n0wall, and will not need the video display and keyboard 
again. Remaining configuration is done from a browser on your client PC. Connect one network 
cable from the m0n0wall WAN port to your cable/DSL modem, and connect a second network 
cable from your client PC to the switch. Ideally your cable/DSL modem should be configured in 
the bridge mode (or be routing one or more real Ipv4 addresses inside), so that you won’t have 
multiple layers of NAT. Configure your client PC to obtain an IPv4 address automatically (with 
DHCPv4). Your client PC should acquire an IPv4 address somewhere in the range you specified 
for the DHCPv4 server. Try to ping the m0n0wall LAN interface from your client PC: 
 
 ping 192.168.1.1 

 
Step 7 – Connect to m0n0wall with browser. 
 

Assuming this worked, use the browser on your client PC to surf to http://192.168.1.1. You 
should see the m0n0wall login screen.  
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Log in with the default username (admin) and password (mono). You should now see the 
m0n0wall main screen.  
 
Click on the System / General Setup link in the left column of that screen. Enter appropriate 
values for hostname (e.g. m0n0wall), domain (e.g. hughesnet.local), select a valid timezone (e.g. 
Asia / Hong Kong), and enter IPv4 addresses of your ISP’s DNS servers (e.g. 4.2.2.2, 4.2.2.3).  
 
Click the Save button at the bottom of the screen. 
 

Step 8 – Configure WAN interface. 
 

Click on the Interfaces / WAN link. Configure your WAN interface as appropriate for your ISP. In 
my case, I use a static globally routable IPv4 address of 12.34.56.120 with subnet mask length 
26, my gateway is 12.34.56.129. (Note: the 12.34.56 is to hide my IP address). On the web form I 
entered: 
 
 Type: Static 

 

 IP address: 12.34.56.120  / 26 

 Gateway: 12.34.56.129 

 
Now click on the Save button at the bottom of the screen. 

 
Step 9 – Verify interface status. 
 

Click on the Status / Interfaces link. Both LAN and WAN interfaces should be up, and have the 
correct configuration. At this point there should not be any global unicast IPv6 addresses listed 
(if IPv6 is enabled on your client PC there may be some link local IPv6 addresses, which start 
with fe80::). 

 
Step 10 – Test firewall. 
 

Your client PC should have normal access to the IPv4 Internet at this point. Ping some internal 
addresses (e.g. 192.168.1.1). Ping some external addresses (e.g. 4.2.2.2). Ping some external 
nodes using symbolic names (e.g. www.ipv6.org). Finally, surf to an external node (e.g. 
www.whatismyip.com). You may wish to explore some of the IPv4 capabilities of m0n0wall at 
this point. By default, all outgoing IPv4 connections are allowed, and with hide mode NAT, there 
are no incoming IPv4 connections. The IPv6 menu options are not visible until you enable IPv6 in 
the next lab. You may want to connect some additional client nodes on the LAN side of the 
firewall. With the chosen private IP address range (192.168.1.0/24) and DHCPv4 configuration, 
you could connect another 100 or so nodes.  

 
You could add some servers behind the firewall that accept connections from the outside world by using 
BINAT (also called 1:1 NAT), and an additional globally routable IPv4 address for each server. In future 
labs, we will configure this to allow incoming connections for Web and E-mail servers over both IPv4 and 
IPv6 for. You will discover that it is much easier to allow incoming connections over IPv6 than it is over 
IPv4. 
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10.2.2 – Router Lab 2: Adding IPv6 service using 6in4 Tunneling from Hurricane Electric 
 
It is possible to also do this lab with 6to4 tunneling (which is also supported with m0n0wall), but I had 
less than satisfactory experience with it (especially with respect to Dual-Stack DNS), so I recommend 
that you use 6in4 tunneling to bring IPv6 service into your testbed network. The only other real 
candidate for tunneling is TSP, with service from gogo6. This will even work from behind a NAT gateway 
(no need for a routable IPv4 address). Unfortunately m0n0wall currently does not include support for 
TSP tunneling. You can build your own router/firewall from FreeBSD and use that if you like, but 
m0n0wall is much easier to work with. 
 
There are actually quite a few sites that provide free 6in4 tunneled service that will work with m0n0wall 
(check out the list at SixXS) but this lab uses Hurricane Electric. We will request a “/64” block of 
addresses and use those to make the entire LAN behind m0n0wall Dual-Stack. We will also have 
m0n0wall provide Router Advertisements so that internal nodes can obtain valid IPv6 addresses through 
Stateless Address Autoconfiguration. No internal node needs to know anything about tunneling – inside 
the LAN, the subnet is native Dual-Stack. 
 
You will need a “real” (globally routable) IPv4 address for the WAN interface of the firewall. This same 
address will be used for hide mode NAT for IPv4 (IPv4 NAT is configured automatically by m0n0wall). The 
firewall will need to be connected to the IPv4 Internet and responding to pings before you can create 
the 6in4 tunnel. Hurricane Electric has a number of PoPs (Points of Presence) around the world, and you 
should choose the one closest to you, to minimize latency.  
 
Step 1 – Register for a Hurricane Electric account for creating and managing 6in4 tunnels.  
 

Surf to www.he.net and click on “Free IPv6 Tunnel Broker”, or surf directly to tunnelbroker.net. 
Read the information provided, and then click on the Register button. Fill in the fields on the 
following screen. There can be only one account for a given e-mail address, but each account 
can request up to 5 tunnels. Each tunnel requires a distinct (not currently used for an HE 
tunnel), globally routable IPv4 address. Each tunnel can be a single “/64”, or upgraded to a full 
“/48” (65,536 “/64” blocks) if desired. Since we will be working with two routing domains (see 
lab 10.2.3), you should upgrade your request to a full “/48”. 

 
Step 2 – Create your 6in4 tunnel.  
 

Once you are registered, or after you login, you will see a page summarizing any tunnels you 
have previously created, and “User Functions” to create new tunnels, etc. Click on Create 
Regular Tunnel. In the following screen, enter your globally routable IPv4 address in the box 
“IPv4 endpoint”. This address must be live and “pingable” for this to work. The webpage will 
show what address you are connecting from, and choose the PoP closest to the source of that 
address. If you prefer to use another PoP for any reason, click the Override button and select 
any of the listed PoPs. Then click the Submit button. 
 
Upon successful creation of your tunnel, the details will be displayed. There is no need for a /48 
in these labs. There are several important items listed in this form that you will need to 
complete the lab. If possible print this page for future reference. 
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Among other items, you will see (sample values from an old tunnel of mine are shown): 
 
 Server IPv4 address:   216.218.221.6 

 Server IPv6 address:   2001:470:1f05:c65::1/64 

 Client IPv4 address:   12.34.56.160 

 Client IPv6 address:   2001:470:1f05:c65::2/64 

 

 Available IPv6 Caching Nameserver: 2001:470:20::2 

 Anycasted IPv4 Caching Nameserver: 74.82.42.42 

 

 Routed /48:     Allocate /48 

 Routed /64:     2001:470:1f05:c65::/64 

 

Step 3 – Configure firewall. 
 

On your client computer, surf to the main configuration page for fw1 (192.168.1.1). Click on the 
System / Advanced  link and click on the Enable IPv6 support link on the resulting screen to 
enable IPv6. Then click on the Save button immediately below that option. 

 
Step 4 – Configure the WAN interface for tunneling.  
 

Click on Interfaces / WAN link and enter the following information (use values appropriate for 
your tunnel), then click on the Save button. Do not enable Router advertisements on the WAN 
interface! 
 
 IPv6 mode  Tunnel    (6in4 tunneling) 

 

 IPv6 address  2001:470:1f05:c65::2 / 64 (Client IPv6 address) 

 

 IPv6 tunnel endpt 216.218.221.6   (Server IPv4 address) 

 
Step 5 – Configure LAN interface for IPv6 operation.  
 

Click on the Interfaces / LAN link and enter the following information  
 
 IPv6 mode  Static 

  

 IPv6 address   2001:470:1f05:c65::1 / 64 (address from your /64) 

 
Click on the Send IPv6 router advertisements link to enable this important function. This will 
make fw1 send periodic Router Advertisement messages with the routed IPv6 prefix (or reply to 
Router Solicitation messages from internal nodes). This is required for internal nodes to create 
IPv6 global unicast addresses. Later if you want to play with DHCPv6, you can worry about the 
following two options, but for now ignore them. You should also configure the above DNS 
servers in m0n0wall. Your client will do DNS resolutions using the LAN port of m0n0wall (using 
its DNS forwarding feature). Click on the Save button. 
 

Step 6 – Allow desired IPv6 traffic to flow.  
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Unlike with IPv4, by default m0n0wall blocks all incoming and all outgoing IPv6 traffic. For 
starters, you might want to allow all outgoing IPv6 traffic and allow all incoming ICMPv6 traffic. 
You can refine this later. To do this, go to the IPv6 Firewall Rules, and create your first two rules 
(then click on “Apply Changes”), as follows: 
 
 Action  Interface Protocol  Source  Destination 

 Pass  LAN  IPv6-ICMP any  any  LAN subnet 

 Pass  LAN  any   LAN subnet any 

 
Step 7 – Configure your internal client computer to support IPv6.  
 

This is done with auto configuration both for the node address and for DNS (if you have issues 
with DNS, configure a real DNS server address). If you are using Windows, use the command 
“ipconfig /all” to verify that your node has obtained one or more valid IPv6 global unicast 
addresses. If you are using FreeBSD, use the command “ifconfig –a”. The global unicast 
addresses will start with the “routed /64” prefix you entered, followed typically by a 64 bit 
interface identifier (probably random if your client computer is Windows Vista or Windows 7). 
You should also see a link-local IPv6 node address, and the link-local address of the gateway (in 
addition to the IPv4 default gateway).  

 
Step 8 –Test network connectivity. 
 

Ping some IPv6 nodes on the LAN, (e.g. 2001:470:1f05:c65::1).  
 
Ping some external IPv6 nodes, (e.g. 2001:470:20::2).  
 
Now ping some symbolic nodenames, such as www.ipv6.org.  
 
Now surf to www.ipv6.org. The webpage there should indicate that you are connecting over 
IPv6, and the IPv6 address of your client computer. As one of the rites of passage, you must 
connect to www.kame.net, and watch the turtle dance (for many years, this has been the 
traditional proof that you have IPv6 working).  
 
You may wish to connect some additional client computers behind your new firewall – you have 
enough global unicast IPv6 addresses for about 16 quadrillion of them! Of course most of those 
would have to be IPv6-only. In later labs, you will open some ports for incoming IPv6 traffic to 
specific nodes. 
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10.3 – Project 3: Internal Dual-Stack FreeBSD Server  
 
In the first lab, we will first deploy FreeBSD 8.0 on a generic PC (IPv4-only) behind the m0n0wall just 
deployed. We allow outgoing IPv4 connections via any protocol, and incoming IPv4 connections via ping 
and ssh. We will then upgrade it to Dual-Stack using a fixed IPv6 address, and allow outgoing IPv6 
connections via any protocol, and incoming IPv6 connections via ping and ssh. You will see that internal 
nodes are just as secure behind an IPv6 firewall with no NAT as they are behind an IPv4 firewall with 
NAT. The primary differences are that it is a lot easier to configure network access over IPv6, and many 
protocols that are broken by NAT now work fine. We will use this FreeBSD server in later labs. 
 
You will need at least one NIC supported by FreeBSD (almost all are). This could be a built-in NIC on the 
motherboard, or a plug-in PCI NIC. We will not be installing X Windows or any window manager (KDE or 
Gnome). A GUI interface is not needed on a server, and merely wastes resources. Because we will be 
using a text-only display, virtually any graphics adapter will work. You will need a monitor and keyboard 
(but no mouse). You can install X and a window manager if you really want to (it will not prevent you 
doing any of the following labs), but this book does not cover how to do this. The memory and CPU 
requirements for FreeBSD are amazingly low compared to Windows Server 2008. Almost any PC you can 
find will run FreeBSD just fine. With a good recent machine and plenty of RAM, you can support many 
thousands of web or email users with no problem. This is an industrial grade operating system, with 
what many people consider the best TCP/IP implementation anywhere. 
 
 
10.3.1 – FreeBSD Server Lab 1: IPv4-Only 
 
Go to www.freebsd.org and download a copy of FreeBSD 7.3. If your CPU is an AMD 64 (or is an Intel 
processor that is “Intel 64” compliant), get the amd64 (64-bit) version. If your CPU is an older Intel (not 
“Intel 64” compliant), get the i386 (32-bit) version. You can look up your Intel processor on their website 
to find its capabilities, including whether it is “Intel 64” or not. Get the single disk DVD ISO image – it will 
simplify installation of packages later. If you are not familiar with FreeBSD, there is a lot of good 
information and tutorials online, and several good books listed in the bibliography. The i386 version of 
FreeBSD will run fine on 64-bit machines, but at much lower performance than when running in native 
64-bit mode. 
 
In this lab we will install FreeBSD 7.3 on a generic PC, with support for IPv4 only. We will upgrade that to 
Dual-Stack in the next lab. There is extensive documentation available on the available options in the 
FreeBSD install. The recommended responses below will select options as needed for the following labs. 
Use them as specified unless you really know what you’re doing. Note that any departures from my 
recommendations (except where noted) may cause problems (or changes to notes) in the following labs. 
 
Step 1 – Configure your ROM BIOS for FreeBSD.  
 

Select “OS does not support Plug and Play” in your ROM BIOS.  
 
Set the boot priority to boot from CDROM/DVD before Hard Disk. 
 
Insert the FreeBSD 7.3 Install DVD and reboot. You will shortly see the “Welcome to FreeBSD!” 
screen. You can hit Enter to continue, or just wait for 10 seconds, and it will continue by itself. 
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The installer will probe your hardware and select appropriate drivers. This takes a few minutes – 
be patient. 

 
Step 2 – Basic FreeBSD installation.  
 

Select the recommended response (or an appropriate response for your case) to the following 
items. You can use up and down arrows on the keyboard, or tab key to highlight any of the 
options. Once the desired option is highlighted, pressing Enter will execute that selection. In 
many cases (e.g. Yes, No, A for Auto defaults, Q to finish), typing the first letter of the option will 
select and execute it immediately). 

 
Country Selection 
 

 (Select the country you are based in, e.g. PHILIPPINES) 

 

System Console Keymap 
 

 (Select the type of keyboard you are using. Most will select USA ISO.) 

 

FreeBSD/amd64  7.3 – RELEASE – sysinstall Main Menu 
 

 Select   Standard – Begin a standard installation 

 

Message (about partitioning) 
 

 Select   OK 

 

User Confirmation Requested (about disk geometry) 
 

 “... Would you like to keep using the current geometry?” 

 

 Select   Yes 

 

FDISK Partition Editor 
 

 Select   A = Use Entire Disk 

 Select   Q = Finish 

 

Install Boot Manager for drive ad0? (or whatever drive it finds) 
 

 Select   Standard – Install a standard MBR (no boot manager) 

 

Message (about BSD partitions) 
 

 Select OK 

 

FreeBSD Disklabel Editor 
 

 Select   A = Auto Defaults 

 Select   Q = Finish 

 

Choose Distributions 
 

 Select   Developer 
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User Confirmation Requested 
 

 “Would you like to install the FreeBSD ports collection?” 

 

 Select   Yes 

 

Choose Distributions 
 

 Select   <<< X Exit 

 

Choose Installation Media 
 

 Select   1 – CD/DVD   Install from a FreeBSD CD/DVD 

 

User Confirmation Requested 
 

 “Last Chance! Are you SURE you want to continue? ...” 

 

 Select   Yes 

 

(it will then create drive partitions, make file systems and copy files for 5-15 minutes) 
 

Message – Congratulations!  
 

 “You now have FreeBSD installed on your system ...” 

 

 Select   OK 

 

User Confirmation Requested 
 

 “Would you like to configure any Ethernet or SLIP/PPP network devices?” 

 

 Select   Yes 

 

Network interface information required 
 

 (It will show a list of available network devices, some physical, some logical) 

 

 vr0 VIA VT3043/VT86C100A Rhine PCI Ethernet 

 plip0 <unknown network interface type> 

 sl0 SLIP interface on device /dev/cuad0 (COM1) 

 ppp0 PPP interface on device /dev/cuad0 (COM1) 

 

 (Highlight your physical network device, usually first listed) 

 

 Select   OK 

 

User Confirmation Requested 
 

 “Do you want to try IPv6 configuration of the interface?” 

 

 Select   No  (we will do this manually later) 

 

User Confirmation Requested 
 

 “Do you want to try DHCP configuration of the interface?” 

 

 Select   No  (a server needs a fixed IPv4 address) 
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Interface Configuration 
 

 Host:   bsd1 

 Domain:  v6labs.com  (use your own domain name) 

 IPv4 Gateway:  192.168.1.1 

 Name Server:  4.2.2.2 

 IP address:  192.168.1.11 

 Netmask:  255.255.255.0 

 

 Select   OK 

 

User Configuration Requested 
 

 “Would you like to bring the vr0 interface up right now?” 

 

 Select   Yes 

 

User Configuration Requested 
 

 “Do you want this machine to function as a network gateway?” 

 

 Select   No 

 

User Configuration Requested 
 

 “Do you want to configure inetd and the network services that it provides?” 

 

 Select   No 

 

User Configuration Requested 
 

 “Do you want to enable ssh login?” 

 

 Select   Yes   (this will install sshd) 

 

User Configuration Requested 
 

 “Do you want to have anonymous FTP access in this machine?” 

 

 Select   No 

 

User Configuration Requested 
 

 “Do you want to configure this machine as an NFS server?” 

 

 Select   No 

 

User Configuration Requested 
 

 “Do you want to configure this machine as an NFS client?” 

 

 Select   No 

 

User Configuration Requested 
 

 “Do you want to customize your system console settings?” 

 

 Select   No 
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User Configuration Requested 
 

 “Would you like to set this machine‟s time zone now?” 

 

 Select   Yes 

 

Select local or UTC (Greenwich Mean Team) clock 
 

 “Is this machine‟s CMOS clock set to UTC ...” 

 

 Select   No 

 

Time Zone Selection 
 

 “Select a region” 

 

 Select your region (e.g.   Asia) 

 

Countries in <selected region> 
 

 “Select a Country or Region” 

 

 Select your country (e.g. Philippines) 

 

Confirmation 
 

 “Does the abbreviation xxx (e.g. PHT) look reasonable?” 

 

 Select   Yes 

 

User Configuration Requested 
 

 “Does the system have a PS/2, serial or bus mouse?” 

 

 Select   No  (we do not need a mouse for a text based console) 

 

User Configuration Requested 
 

 “Do you want to browse FreeBSD ports collection now?” 

 

 Select   Yes 

 

 Select   Security, then   sudo-1.7.2.5 

 

 Select   Shells then   pdksh-5.2.14p2_2 

 

 Select   Install 

 

Package Targets 
 

 (It will list selected packages, e.g. sudo, pdksh) 

 

 Select   OK 

 

Adding packages 
 

 (the selected packages will install from the DVD, which takes a few minutes) 
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User Configuration Requested 
 

 “Would you like to add any initial user accounts to the system?” 

 

 Select   Yes 

 

User and group management 
 

 Select   Group 

 

 Select   OK 

 

Add a new group 
 

 Group name: admin 

 GID:  1001 

 

 Select   OK 

 

 Select   User 

 

 Select   OK 

 

Add a new user 
 

 Login ID:  admin 

 UID:   1001 

 Group:   admin 

 Password:  admin$pw   (specify your own admin password here) 

 Full Name:  System Administrator 

 Member Groups: wheel   (enable admin to use sudo command)  

 Home directory: /home/admin 

 Login shell:  /usr/local/bin/ksh (or use default shell) 

  

 Select   OK 

 

 Select   X – Exit 

 

Message 
 

 “Now you must set the system manager‟s password ...” 

 

 Select   OK 

 

 New Password:   root$pw  (specify your root password, chars don‟t echo) 

 Retype New Password:  root$pw (repeat new root password, chars don‟t echo) 

 

User Configuration Requested 
 

 “Visit the general configuration menu for a chance to set any last options?” 

 

 Select   No 

 

 Select   X – Exit Install 

 

 “Are you sure you wish to exit? The system will reboot (be sure to remove any 

 floppies/CD/DVDs from the drives)” 

 

 Select   YES 
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(the system will now reboot – remove the install DVD before it starts loading!) 
 
Step 3 – Reboot computer and log in. 
 

The FreeBSD startup scripts will run, then the system ID is displayed, followed by the login 
prompt: 
 
FreeBSD/amd64 (bsd1.v6lab.com) (ttyv0) 

 

login: admin 

password: admin$pw  (note: characters typed will not echo) 

 

Last login: Tue May 18 23:50:04 2010 

Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 

        The Regents of the University of California.  All rights reserved. 

 

FreeBSD 7.3-RELEASE (GENERIC) #0: Sun Mar 21 05:25:24 UTC 2010 

 

<the Message Of The Day will display – you can edit this in /etc/motd> 

 

$ 

 
FreeBSD is now up and running, and you are logged in as user admin. The “$” is the default Korn 
Shell command prompt. That means FreeBSD is waiting for you to enter a command. To do 
things requiring root privilege, enter the command su, followed by the root password (e.g. 
root$pw). The command prompt will change to “#” when you have root privilege. To exit root 
privilege, enter the command exit. For details on FreeBSD commands, check online, or in any of 
the books on FreeBSD listed in the Bibliography. You should learn at least one screen-oriented 
text editor, either vi (the default UNIX screen oriented text editor) or edit (a simple emacs-like 
editor). Again, there is documentation on these online and in books (edit is a simple emacs style 
editor). I happen to like the uemacs text editor (also similar to emacs, but a little more 
complete), which can be installed from the FreeBSD ports collection (go to directory 
/usr/ports/editors/uemacs and build it). 

 
Step 4 – View and test network configuration. 
 

 Use “ifconfig –a” to view current network configuration of all interfaces (vr0 is physical Ethernet 
interface, lo0 is the “loopback” logical interface). Ping the FreeBSD node itself (192.168.1.11), 
the default gateway (192.168.1.1), an external node (4.2.2.2) and an external node using 
symbolic nodename (www.ipv6.org). Note that ping will keep running until you stop it by typing 
Ctrl-C. 

 
$ ifconfig –a 

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC> 

        ether 00:15:f2:2e:b4:a5 

        inet 192.168.1.11 netmask 0xffffff00 broadcast 192.168.1.255 

        media: Ethernet autoselect (100baseTX <full-duplex>) 

        status: active 

plip0: flags=108810<POINTOPOINT,SIMPLEX,MULTICAST,NEEDSGIANT> metric 0 mtu 1500 

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384 

        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x3 

        inet6 ::1 prefixlen 128 
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        inet 127.0.0.1 netmask 0xff000000 

 

$ ping 192.168.1.11 

PING 192.168.1.11 (192.168.1.11): 56 data bytes 

64 bytes from 192.168.1.11: icmp_seq=0 ttl=64 time=0.041 ms 

64 bytes from 192.168.1.11: icmp_seq=1 ttl=64 time=0.008 ms 

^C 

--- 192.168.1.11 ping statistics --- 

3 packets transmitted, 3 packets received, 0.0% packet loss 

round-trip min/avg/max/stddev = 0.008/0.019/0.041/0.016 ms 

 

$ ping 192.168.1.1 

PING 192.168.1.1 (192.168.1.1): 56 data bytes 

64 bytes from 192.168.1.1: icmp_seq=0 ttl=64 time=0.600 ms 

64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.467 ms 

^C 

--- 192.168.1.1 ping statistics --- 

2 packets transmitted, 2 packets received, 0.0% packet loss 

round-trip min/avg/max/stddev = 0.467/0.533/0.600/0.067 ms 

 

$ ping 4.2.2.2 

PING 4.2.2.2 (4.2.2.2): 56 data bytes 

64 bytes from 4.2.2.2: icmp_seq=0 ttl=52 time=203.961 ms 

64 bytes from 4.2.2.2: icmp_seq=1 ttl=52 time=205.177 ms 

^C 

--- 4.2.2.2 ping statistics --- 

2 packets transmitted, 2 packets received, 0.0% packet loss 

round-trip min/avg/max/stddev = 203.961/204.569/205.177/0.608 ms 

 

$ ping www.ipv6.org 

PING shake.stacken.kth.se (130.237.234.40): 56 data bytes 

64 bytes from 130.237.234.40: icmp_seq=0 ttl=42 time=408.089 ms 

64 bytes from 130.237.234.40: icmp_seq=1 ttl=42 time=413.438 ms 

^C 

--- shake.stacken.kth.se ping statistics --- 

3 packets transmitted, 2 packets received, 33.3% packet loss 

round-trip min/avg/max/stddev = 408.089/410.764/413.438/2.674 ms 

 

$ 
 
Step 5 – Use netstat to see what ports are being listened to: 
 

 

 # netstat -na 

 Active Internet connections (including servers) 

 Proto Recv-Q Send-Q  Local Address          Foreign Address        (state) 

 tcp4       0     52 192.168.1.11.22        192.168.1.100.50057    ESTABLISHED 

 tcp4       0      0 *.22                   *.*                    LISTEN 

 udp4       0      0 *.514                  *.* 

 

 At this time, ssh (port 22/tcp) and syslog (port 514/udp) are listening only on IPv4. 
 
Step 5 – Install putty on your Windows client node. 
 

This will be used to connect to the FreeBSD server using the ssh (“secure shell”) protocol. 
 
Download the putty open source ssh client for Windows (www.putty.org, among other places). 
Install it on your Windows client connected to NET1. Use it to connect to the new FreeBSD node 
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by IP address (192.168.1.11). The first time you connect, it will warn you that this is an 
unrecognized system – accept the key and continue. Login as admin with password admin$pw. 
Note that you cannot login as root directly for security reasons. This is one reason to create a 
non-root account (admin) with the ability to elevate to root privilege using the su command 
when needed. You can open any number of ssh and/or telnet connections to your FreeBSD 
server from any number of other computers with network connectivity. The ssh protocol creates 
an encrypted tunnel, while telnet is in plaintext. The ssh server (sshd) is installed and 
automatically started at boot time if you select in during FreeBSD installation (or have installed 
it from the ports collection). 
 
All remaining labs can be done from your Windows PC using putty or from the FreeBSD console, 
as desired. Connections over ssh from outside the firewall (to test access from outside) will 
require some kind of ssh client (e.g. putty), on a node that is located outside of your firewall. 

 
Step 6 – Allow access via ssh and ping from outside of the firewall over IPv4.  
 

This requires a second globally routable IPv4 address, setting up 1:1 NAT in m0n0wall between 
the second routable IPv4 address and bsd1’s internal IPv4 address, adding a proxy arp, and 
adding some new IPv4 firewall rules on m0n0wall. This is how you make an IPv4 server 
accessible from outside your network today (because of the presence of NAT). This process is far 
simpler with IPv6, as you will see in the next lab. Note: if you haven’t got a second routable IPv4 
address, you can get by with using a single routable IPv4 address, by using m0n0wall’s INBOUND 
NAT (this is similar to port redirection on other firewalls). 
 
Create 1:1 NAT mapping: Click on the Firewall / NAT link. Click on the 1:1 tab on the NAT screen. 
Enter your second routable IPv4 address (e.g. 12.34.56.161/32) as the External IP address and 
the internal address of bsd1 (192.168.1.11/32) as the Internal IP address. Allow m0n0wall to 
automatically create the necessary proxy arp. Verify the created proxy arp by clicking on Services 
/ Proxy ARP. It should show Interface WAN, Network 12.34.56.161 (your second routable IPv4 
address). 
 
Create the necessary IPv4 firewall rules: Click on the Firewall / Rules link. No new LAN rules are 
required. On the WAN tab, enter two new rules:  
 
 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 192.168.1.11, Port = 22 

 

 Action = Pass, Proto = ICMP (any), Source = any, Port = any,  

 Destination = LAN net, Port = any 

 
Click on the Apply Changes button. 
 
Now, from a node outside of your LAN (possibly via ssh to an external FreeBSD node, or ask a 
friend somewhere to do this for you), ping the external IP address of bsd1 (e.g. ping 
12.34.56.161), then connect to it via ssh. 

 
$ ping 12.34.56.161 

PING 12.34.56.161 (12.34.56.161): 56 data bytes 

64 bytes from 12.34.56.161: icmp_seq=0 ttl=64 time=0.043 ms 
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64 bytes from 12.34.56.161: icmp_seq=1 ttl=64 time=0.010 ms 

^C 

--- 12.34.56.161 ping statistics --- 

2 packets transmitted, 2 packets received, 0.0% packet loss 

round-trip min/avg/max/stddev = 0.010/0.026/0.043/0.016 ms 

 

$ ssh admin@12.34.56.161 

The authenticity of host '12.34.56.161 (12.34.56.161)' can't be established. 

DSA key fingerprint is e3:b6:44:e6:10:60:46:b3:75:2e:ec:b8:3f:f1:6c:2d. 

Are you sure you want to continue connecting (yes/no)? yes 

Warning: Permanently added '12.34.56.161' (DSA) to the list of known hosts. 

Password: admin$pw  (chars do not echo) 

Last login: Thu May 20 16:55:26 2010 from 2001:418:5403:2 

Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 

        The Regents of the University of California.  All rights reserved. 

 

FreeBSD 7.3-RELEASE (GENERIC) #0: Sun Mar 21 05:25:24 UTC 2010 

 

$ uname -a 

FreeBSD bsd1.v6lab.com 7.3-RELEASE FreeBSD 7.3-RELEASE #0: Sun Mar 21 05:25:24 UTC 

2010     root@driscoll.cse.buffalo.edu:/usr/obj/usr/src/sys/GENERIC  amd64 

 

$ exit 

Connection to 12.34.56.161 closed. 

$ 

 
Your new FreeBSD server is now available from anywhere on the IPv4 Internet! But before you panic, 
this access is controlled by the IPv4 rules in the firewall. 
 
 
10.3.2 – FreeBSD Server Lab 2: Add Support for IPv6 
 
Step 1 – Login with root privilege. 
 

Login as admin, password admin$pw. Elevate privilege to root with su command, password 
root$pw. In the following, replace the string “vr0” with the interface name from your FreeBSD 
install (as in “ipv6_ifconfig_vr0”). Edit the file /etc/rc.conf, add the following lines: 
 
 ipv6_enable=”YES” 

 ipv6_ifconfig_vr0=”2001:470:1f05:c65::11 prefixlen 64” 

 ipv6_defaultrouter=”2001:470:1f05:c65::1” 

 

Step 2 – Edit the file /etc/hosts  
 

Add the following lines: 
 

 2001:470:1f05:c65::11 bsd1.v6lab.com  bsd1 

 2001:470:1f05:c65::11 bsd1.v6lab.com. 

 
Step 3 – Reboot the FreeBSD node and log back in with root privilege. 
 
 # reboot 

 ... 

 login as: admin 

 Password: admin$pw 

 $ su 
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 password: root$pw 

 # 

 

Step 4 – Use netstat to see what ports are being listened to: 
 

 # netstat -na 

 Active Internet connections (including servers) 

 Proto Recv-Q Send-Q  Local Address          Foreign Address        (state) 

 tcp4       0     52 192.168.1.11.22        192.168.1.100.50057    ESTABLISHED 

 tcp4       0      0 *.22                   *.*                    LISTEN 

 tcp6       0      0 *.22                   *.*                    LISTEN 

 udp4       0      0 *.514                  *.* 

 udp6       0      0 *.514                  *.* 

 

 At this time, ssh (port 22/tcp) and syslog (port 514/udp) are running dual-stack. 
 
Step 5 – Verify configuration and test IPv6 connectivity: 
 
bsd1# ifconfig -a 

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC> 

        ether 00:15:f2:2e:b4:a5 

        inet6 fe80::215:f2ff:fe2e:b4a5%vr0 prefixlen 64 scopeid 0x1 

        inet 192.168.1.11 netmask 0xffffff00 broadcast 192.168.1.255 

        inet6 2001:470:1f05:c65::11 prefixlen 64 

        media: Ethernet autoselect (100baseTX <full-duplex>) 

        status: active 

plip0: flags=108810<POINTOPOINT,SIMPLEX,MULTICAST,NEEDSGIANT> metric 0 mtu 1500 

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384 

        inet6 ::1 prefixlen 128 

        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x3 

        inet 127.0.0.1 netmask 0xff000000 

 

bsd1# ping6 2001:470:1f05:c65::11 

PING6(56=40+8+8 bytes) 2001:470:1f05:c65::11 --> 2001:470:1f05:c65::11 

16 bytes from 2001:470:1f05:c65::11, icmp_seq=0 hlim=64 time=0.093 ms 

16 bytes from 2001:470:1f05:c65::11, icmp_seq=1 hlim=64 time=0.028 ms 

^C 

--- 2001:470:1f05:c65::11 ping6 statistics --- 

2 packets transmitted, 2 packets received, 0.0% packet loss 

round-trip min/avg/max/std-dev = 0.028/0.060/0.093/0.033 ms 

 

bsd1# ping6 2001:470:1f05:c65::1 

PING6(56=40+8+8 bytes) 2001:470:1f05:c65::11 --> 2001:470:1f05:c65::1 

16 bytes from 2001:470:1f05:c65::1, icmp_seq=0 hlim=64 time=1.409 ms 

16 bytes from 2001:470:1f05:c65::1, icmp_seq=1 hlim=64 time=0.544 ms 

^C 

--- 2001:470:1f05:c65::1 ping6 statistics --- 

2 packets transmitted, 2 packets received, 0.0% packet loss 

round-trip min/avg/max/std-dev = 0.544/0.977/1.409/0.433 ms 

 

bsd1# ping6 2001:470:20::2 

PING6(56=40+8+8 bytes) 2001:470:1f05:c65::11 --> 2001:470:20::2 

16 bytes from 2001:470:20::2, icmp_seq=1 hlim=63 time=87.920 ms 

16 bytes from 2001:470:20::2, icmp_seq=2 hlim=63 time=207.857 ms 

^C 

--- 2001:470:20::2 ping6 statistics --- 

3 packets transmitted, 2 packets received, 33.3% packet loss 

round-trip min/avg/max/std-dev = 87.920/147.888/207.857/59.969 ms 
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bsd1# ping6 www.ipv6.org 

PING6(56=40+8+8 bytes) 2001:470:1f05:c65::11 --> 2001:6b0:1:ea:202:a5ff:fecd:13a6 

16 bytes from 2001:6b0:1:ea:202:a5ff:fecd:13a6, icmp_seq=0 hlim=48 time=557.031 ms 

16 bytes from 2001:6b0:1:ea:202:a5ff:fecd:13a6, icmp_seq=1 hlim=48 time=529.053 ms 

^C 

--- shake.stacken.kth.se ping6 statistics --- 

2 packets transmitted, 2 packets received, 0.0% packet loss 

round-trip min/avg/max/std-dev = 529.053/543.042/557.031/13.989 ms 

 

bsd1#  

 
Step 6 – Allow access to bsd1 via IPv6 from outside your LAN.  
 

Your BSD node’s global unicast IPv6 address (e.g. 2001:470:1f05:c65::11) is already globally 
routable, so there is no need for 1:1 NAT or a proxy arp. All you need to do is add some IPv6 
firewall rules. Click on the Firewall / IPv6 Rules link. Click on the LAN tab. Add two new rules 
(remember all incoming and outgoing IPv6 traffic are blocked by default): 
 
 Action = Pass, Proto = IPv6-ICMP, Source = any, Port = any,  

Destination = LAN subnet, Port = any 

 

 Action = Pass, Proto = any, Source = LAN subnet, Port = any,  

Destination = any, Port = any 

 
These allow incoming ICMPv6, and all outgoing protocols. Click on the Apply Changes button. 
 
Now click on the WAN tab. Add two more rules: 
 
 Action = Pass, Proto = IPv6-ICMP, Source = any, Port = any,  

Destination = any, Port =any 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

Destination = 2001:470:1f05:c65::11, Port = 22 

 

These allow incoming ICMPv6, and incoming ssh (port 22) over IPv6.  Click on the Apply Changes 
button. 
 
Now, from a node outside of your LAN (possibly via ssh to an external FreeBSD node, or ask a 
friend somewhere who has IPv6 to do this for you), ping the IPv6 address of bsd1 then connect 
to it via ssh. 
 

$ ping6 2001:470:1f05:c65::11 

PING6(56=40+8+8 bytes) 2001:470:1f05:c65::11 --> 2001:470:1f05:c65::11 

16 bytes from 2001:470:1f05:c65::11, icmp_seq=0 hlim=64 time=0.097 ms 

16 bytes from 2001:470:1f05:c65::11, icmp_seq=1 hlim=64 time=0.037 ms 

^C 

--- 2001:470:1f05:c65::11 ping6 statistics --- 

2 packets transmitted, 2 packets received, 0.0% packet loss 

round-trip min/avg/max/std-dev = 0.037/0.067/0.097/0.030 ms 

 

$ ssh admin@2001:470:1f05:c65::11 

The authenticity of host '2001:470:1f05:c65::11 (2001:470:1f05:c65::11)' can't be 

established. 

DSA key fingerprint is e3:b6:44:e6:10:60:46:b3:75:2e:ec:b8:3f:f1:6c:2d. 

Are you sure you want to continue connecting (yes/no)? yes 
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Warning: Permanently added '2001:470:1f05:c65::11' (DSA) to the list of known hosts. 

Password: 

Last login: Thu May 20 17:27:02 2010 from 12.34.56.161 

Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 

        The Regents of the University of California.  All rights reserved. 

 

FreeBSD 7.3-RELEASE (GENERIC) #0: Sun Mar 21 05:25:24 UTC 2010 

 

Welcome to FreeBSD! 

 

$ uname -a 

FreeBSD bsd1.v6lab.com 7.3-RELEASE FreeBSD 7.3-RELEASE #0: Sun Mar 21 05:25:24 UTC 

2010     root@driscoll.cse.buffalo.edu:/usr/obj/usr/src/sys/GENERIC  amd64 

 

$ exit 

Connection to 2001:470:1f05:c65::11 closed. 

$ 

 

Your new FreeBSD server can now connect to, and is available from anywhere on the IPv6 Internet! But 
before you panic, remember that this is subject to the rules in your firewall. By default, the m0n0wall 
(and this will be typical of IPv6 firewalls) will block at least all incoming connections, and in many cases 
all outgoing connections. You will need to specifically allow any incoming IPv6 connections, to specific 
internal nodes (by address) and via specific protocols (by port). Your internal nodes are just as safe from 
unwanted incoming connections as IPv4 nodes are behind “hide mode NAT”, but wanted incoming 
connections are far easier to allow. 
 
 
10.3.3 – FreeBSD Server Lab 3: Install Gnome GUI for FreeBSD (optional) 
 
A FreeBSD server does not really need a GUI interface, and many system administrators consider one to 
be unnecessary overhead on a server. However, if you prefer, you can add the KDE or Gnome GUI to 
FreeBSD to make it more like a Windows Server. This will allow you to test later labs from the included 
browser and e-mail client rather than using a Windows node. This lab installs Gnome, one of the more 
popular GUIs for UNIX-like systems. If you prefer KDE, see information online or in books regarding 
installation and configuration of that. 
 
Step 1 – Install the Gnome packages. 
 

Insert the FreeBSD 7.3 Installation DVD in the drive of your bsd1 server. Login as root (username 
root, password root$pw). Type the command sysinstall. In the resulting menu system, select 
Configure, then Packages, then select installation medium as CD/DVD. In the list of package 
categories, select gnome. In the list of Gnome related packages, highlight gnome2-2.28.2_1 by 
moving to it with arrow keys then hitting the space bar. Hit the tab key to move to the OK 
button. Hit the Enter key. Tab to the Install options and hit the Enter key. This will take a while 
as there are many parts to Gnome. This will not install Open Office, but you can add that using 
sysinstall if you wish. When it is done, exit from sysinstall. 

 
Step 2 – Enable procfs. 
 

For some reason, FreeBSD does not do this automatically when you install Gnome.  
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Edit the file /etc/fstab. Add the following information at the end: 
 
 proc /proc procfs rw 0 0 

 
Step 3 – Arrange for Gnome to start automatically at boot time.  
 

For the fully automated Gnome startup, edit the file /etc/rc.conf and add the following lines (the 
moused_enable line may already be there).  
 
 moused_enable=”YES” 

 gnome_enable=”YES” 

 
Reboot your system. The GUI (complete with gdm login manager) will come up automatically 
after the reboot. The available users will be listed in the gdm User List. Choose one and enter 
the password. Note that root will not appear as one of the available users. You can still login as 
root by selecting other then entering username root. You can of course login as admin and use 
su to elevate to root privilege, in a Console terminal. There are also ways to allow manual 
startup of X and Gnome without having gdm control login. Details can be found in online guides 
and some books on FreeBSD. 
 
If you ever want to go back to a text-only FreeBSD system, comment out the line in file 
/etc/rc.conf with “gnone_enable” (change it to #gnome_enable=”YES”), and reboot.  
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10.4 – Project 4: Dual Stack DNS Server 
 
Any dual-stack network requires dual-stack DNS service. You should obtain a test domain from a 
registrar that supports registering the NS records in the TLD servers with both IPv4 and IPv6 addresses, 
such as godaddy.com. The names and addresses of all internal nodes should be populated in a DNS 
authoritative zone for your test domain. You can also publish the names and addresses of nodes for 
externally visible nodes in another BIND “view”. 
 
Assignment of IPv4 node addresses and other network configuration (default gateway, subnet mask, 
IPv4 addresses of DNS servers) can be done manually on each node, or automated with DHCPv4. 
 
Assignment of IPv6 node addresses can be done manually, or more likely with Stateless Address Auto-
configuration (which requires a source of Router Advertisement messages on the network). The link-
local address of the default gateway typically is done automatically via Neighbor Discovery protocol 
(assuming there is a dual stack gateway on the network). The IPv6 addresses of DNS (and other) servers 
can be done manually, or automated via stateless DHCPv6. With stateful DHCPv6, it is possible to assign 
IPv6 addresses automatically in a more controlled manner. 
 
You can do this using Open Source components, or with Windows Server 2008, or both (but only one 
DHCPv4 server should be active on any given network). 
 
If this project is too complicated, you can contact InfoWeapons to use our free trial hosted dual-stack 
DNS service (for a limited number of nodes), or sign up for a commercial hosted account. This is 
implemented with our SolidDNS appliance with intuitive GUI administration. You will get an 
“organization account” which allows you to see and modify only your own domain information. You can 
also purchase one or more InfoWeapons’ SolidDNS appliances to provide dual stack DNS (with DNSSEC 
and ENUM), plus DHCPv4 and DHCPv6 service (stateless and stateful) in your testbed network. 
 
Another alternative is to deploy Microsoft Windows Server 2008 SP1 as another node behind the 
m0n0wall. It includes a fairly complete dual stack DNS server (as well as DHCPv4 and DHCPv6 servers). 
These are simple to manage via GUI administrative interfaces. See Microsoft documentation for 
installing Windows Server 2008 SP1, configuring it for dual-stack operation (with a fixed address), and 
deploying & configuring the DNS server. 
 
If you wish publish the addresses of your external nodes from elsewhere on the Second Internet, this 
DNS facility can be configured to support internal and external views, and registered as the authoritative 
server for your domain. You will need to allow incoming connections over DNS (53/udp) through the 
firewall (over IPv4 and IPv6). I actually recommend that you use Hurricane Electric’s free dual-stack DNS 
service to publish public the external addresses for these labs (as detailed later in this lab). 
 
 
10.4.1 – DNS Lab 1: Install, Configure for IPv4 Resource Records & Test 
 
Step 1 – Install BIND v9.7 from FreeBSD ports. 
 

Login as admin (password admin$pw), elevate privilege to root (su command, password 
root$pw). Do following commands: 
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 # cd /usr/ports/dns/bind97 

 # make install clean 

 
  (select SSL, REPLACE_BASE and IPV6 options) 
 ... 

 
Step 2 – Edit named.conf file (top level BIND configuration file).  
 
 # cd /var/named/etc/namedb 

 # edit named.conf  (use whatever editor you prefer) 

 
 Find the line containing “listen-on” and comment it out 
 
  old:  listen-on {  127.0.0.1; }; 

 

  new:  // listen-on { 127.0.0.1; }; 

 
 Find the lines containing “forwarders” remove comment delimiters before and after. Change the 
 dummy IP addresses there to the IP addresses of your ISP’s DNS servers. 
 
  old:  /* 

    forwarders { 

     127.0.0.1; 

    }; 

    */ 

 

  new:  forwarders { 

     4.2.2.2; 4.2.2.3; 

    }; 

 
 Go to the end of the file, and add the following zones: 
 
  zone “v6lab.com” { 

   type master; 

   file “/etc/namedb/master/v6lab.com”; 

   allow-transfer { localhost; }; 

   allow-update { key rndc-key; }; 

  }; 

 

  zone “1.168.192.in-addr.arpa” { 

   type master; 

   file “/etc/namedb/master/192.168.1.rev”; 

   allow-transfer { localhost; }; 

   allow-update { key rndc-key; }; 

  }; 

 

 Write file, exit editor. 
 
Step 3 – Create rndc configuration on rndc.key and concatenate it to named.conf file 
 
 # rndc-confgen -a 

 # cp named.conf named.conf.old 

 # cat rndc.key >> named.conf 
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Step 4 – Create forward zone file (v6lab.com) 
 
 # cd /var/named/etc/namedb/master 

 # edit v6lab.com  (use any text editor you prefer) 

 

 (add the following contents) 

 

 $TTL 3600 

 v6lab.com.  IN SOA bsd1.v6lab.com.  root.v6lab.com. ( 

       1  ; Serial 

       10800  ; Refresh 

       3600  ; Retry 

       604800  ; Expire 

       86400 ) ; Minimum TTL 

 

 ; nameservers 

 

 v6lab.com.  IN NS bsd1.v6lab.com. 

 

 ; Computer names and IP addresses 

 

 fw1.v6lab.com. IN A 192.168.1.1 

 bsd1.v6lab.com. IN A 192.168.1.11 

 

 

Step 5 – Create reverse zone file (192.168.1.rev) 
 
 # cd /var/named/etc/namedb/master 

 # edit 192.168.1.rev  (use any text editor you prefer) 

 

 (add the following contents) 

 

 $TTL 3600 

 1.168.192.in-addr.arpa. IN SOA bsd1.v6lab.com.  root.v6lab.com. ( 

       1  ; Serial 

       10800  ; Refresh 

       3600  ; Retry 

       604800  ; Expire 

       86400 ) ; Minimum TTL 

 

 ; nameservers 

 

 1.168.192.in-addr.arpa. IN NS bsd1.v6lab.com. 

 

 ; IPv4 addresses 

 

 1    IN PTR fw1.v6lab.com. 

 11    IN PTR bsd1.v6lab.com. 

 

Step 6 – Add this FreeBSD server into /etc/resolv.conf (to be your primary DNS server) 
 

 # edit /etc/resolv.conf 

 

  (add following line as first nameserver) 

 

  nameserver 192.168.1.11 

 

Step 7 – Enable BIND (named) in startup script /etc/rc.conf 
 

 # edit /etc/rc.conf 
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  (add following line at bottom) 

 

  named_enable=”YES” 

 

 

Step 8 – Check syntax of BIND configuration files without actually starting named: 
 
 # named-checkconf 

 
 (fix any problems reported, such as missing periods or semicolons) 
 
Step 9 – Start BIND. 
 

Start the named daemon, verify it is running (with ps) and test it with nslookup over IPv4. Note – 
if you have problems, error messages are written to /var/log/messages. 
 
 # /etc/rc.d/named start 

 Starting named. 

 

 # ps –ax | grep named 

 15560  ??  Ss   0:00.06 /usr/sbin/named –t /var/named –u bind 

  

 # nslookup – 192.168.1.11 

 

 > bsd1.v6lab.com 

 Server: 192.168.1.11 

 Address: 192.168.1.11#53 

 

 Name: bsd1.v6lab.com 

 Address: 192.168.1.11 

 

 > fw1.v6lab.com 

 Server: 192.168.1.11 

 Address: 192.168.1.11#53 

 

 Name: fw1.v6lab.com 

 Address: 192.168.1.1 

 

 > 192.168.1.11 

 Server: 192.168.1.11 

 Address: 192.168.1.11#53 

 

 11.1.168.192.in-addr.arpa name = bsd1.v6lab.com. 

 

 > 192.168.1.1 

 Server: 192.168.1.11 

 Address: 192.168.1.11#53 

 

 1.1.168.192.in-addr.arpa name = fw1.v6lab.com. 

 

 > www.ipv6.org 

 Server: 192.168.1.11 

 Address: 192.168.1.11#53 

 

 Non-authoritative answer: 

 www.ipv6.org canonical name = shake.stacken.kth.se. 

 Name: shake.stacken.kth.se 



251 

 

 Address: 130.237.234.40 

 

 > exit 

 

 # 

 

Step 10 – Use netstat to see which sockets BIND is listening to (non-relevant items edited out) 
 

 # netstat -na 

 Active Internet connections (including servers) 

 Proto Recv-Q Send-Q  Local Address          Foreign Address        (state) 

 tcp4       0      0 127.0.0.1.953          *.*                    LISTEN 

 tcp4       0      0 127.0.0.1.53           *.*                    LISTEN 

 tcp4       0      0 192.168.1.11.53        *.*                    LISTEN 

 udp4       0      0 127.0.0.1.53           *.* 

 udp4       0      0 192.168.1.11.53        *.* 

 
 Here is the interpretation of this. You can see that BIND is currently IPv4-only. 
 
 IP version Address  Transport Port  Service 
 IPv4  127.0.0.1 tcp  953  rndc 
 IPv4  127.0.0.1 tcp  53  zone transfers 
 IPv4  127.0.0.1 udp  53  DNS queries 
 IPv4  192.168.1.11 tcp  53  zone transfers 
 IPv4  192.168.1.11 udp  53  DNS queries 
 
 
10.4.2 – DNS Lab 2: Migrate BIND to Dual Stack (add support for IPv6) 
 
With DNS, the same server that manages IPv4 resource records can also manage IPv6 resource records 
(unlike DHCP, which required a very different design for DHCPv6). It already accepts queries, and can do 
zone transfers over either IPv4 or IPv6. All we need to do is add some additional resource records. Note 
that the reverse zones are done a bit differently in IPv6. For full details, see “BIND and DNS, 5th Edition”. 
 
By default, BIND listens for connections from resolvers (DNS clients) only on IPv4. You will also need to 
make one change in named.conf to make it also listen on IPv6. 
 
Step 1 – Edit named.conf file to make it listen on IPv6, then add new reverse zone for IPv6 
 
 # cd /var/named/etc/namedb 

 # edit named.conf  (use whatever editor you prefer) 

 
Change the “listen-on-v6” line (uncomment it and change “::1” to “any”) 
 
 old: //    listen-on-v6   { ::1; }; 

 

 new: listen-on-v6 { any; }; 

 
Add the following content after the 1.168.192.in-addr.arpa zone: 
 
 zone “c.3.4.0.9.1.0.0.0.7.4.0.1.0.0.2.ip6.arpa” { 

  type master; 
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  file “/etc/namedb/master/2001.470.1f05.c65.rev”; 

  allow-transfer { localhost; }; 

  allow-update { key rndc-key; }; 

 }; 

 

Step 2 – Edit master/v6lab.com file to add AAAA records 
 

# cd /var/named/etc/namedb/master 

# edit v6lab.com 

 
Add following new records at the end: 
 
 fw1.v6lab.com. IN AAAA 2001:470:1f05:c65::1 

 bsd1.v6lab.com. IN AAAA 2001:470:1f05:c65::11 

 
Step 3 – Create new reverse zone for IPv6 addresses 
 
 # cd /var/named/etc/namedb/master 

 # edit 2001.470.1f05.c65.rev (note use of . instead of : in filename) 

 

Enter following information in the file: 
 

$TTL 3600 

c.3.4.0.9.1.0.0.0.7.4.0.1.0.0.2.ip6.arpa. IN SOA bsd1.v6lab.com. root.v6lab.com. ( 

      1  ; Serial 

      10800  ; Refresh 

      3600  ; Retry 

      604800  ; Expire 

      86400 ) ; Minimum TTL 

 

; nameservers 

 

c.3.4.0.9.1.0.0.0.7.4.0.1.0.0.2.ip6.arpa. IN NS bsd1.v6lab.com. 

 

; IPv6 addresses 

 

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0   IN PTR fw1.v6lab.com. 

1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0   IN PTR bsd1.v6lab.com. 

 
Step 4 – Check syntax of BIND configuration files 
 

# named-checkconf 

 
(fix any problems reported, such as missing periods or semicolons) 

 
Step 5 – Restart the named daemon and test it over IPv6 
 

# /etc/rc.d/named restart 

Starting named. 

 

# nslookup – 2001:470:1f05:c65::11 

> set q=any 

> bsd1.v6lab.com 

Server: 192.168.1.11 

Address: 192.168.1.11#53 
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bsd1.v6lab.com  has AAAA address 2001:470:1f05:c65::11 

Name: bsd1.v6lab.com 

Address: 192.168.1.11 

 

> fw1.v6lab.com 

Server: 192.168.1.11 

Address: 192.168.1.11#53 

 

bsd1.v6lab.com  has AAAA address 2001:470:1f05:c65::1 

Name: fw1.v6lab.com 

Address: 192.168.1.1 

 

> 2001:470:1f05:c65::1 

Server: 192.168.1.11 

Address: 192.168.1.11#53 

 

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.c.3.4.0.9.1.0.0.0.7.4.0.1.0.0.2.ip6.arpa 

name = fw1.v6lab.com. 

 

> 2001:470:1f05:c65::11 

Server: 192.168.1.11 

Address: 192.168.1.11#53 

 

1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.c.3.4.0.9.1.0.0.0.7.4.0.1.0.0.2.ip6.arpa 

name = bsd1.v6lab.com. 

 

> set q=AAAA 

> www.ipv6.org 

Server: 192.168.1.11 

Address: 192.168.1.11#53 

 

Non-authoritative answer: 

www.ipv6.org canonical name = shake.stacken.kth.se. 

shake.stacken.kth.se  has AAAA address 2001:6b0:1:eq:202:a5ff:fecd:13a6 

 

Authoritative answers can be found from: 

 

> exit 

 

# 

 
Step 6 – Use netstat to see which sockets BIND is listening to (non-relevant items edited out) 
 

# netstat -na 

Active Internet connections (including servers) 

Proto Recv-Q Send-Q  Local Address          Foreign Address        (state) 

tcp6       0      0 ::1.953                *.*                    LISTEN 

tcp4       0      0 127.0.0.1.953          *.*                    LISTEN 

tcp4       0      0 127.0.0.1.53           *.*                    LISTEN 

tcp4       0      0 192.168.1.11.53        *.*                    LISTEN 

tcp6       0      0 *.53                   *.*                    LISTEN 

udp4       0      0 127.0.0.1.53           *.* 

udp4       0      0 192.168.1.11.53        *.* 

udp6       0      0 *.53                   *.* 

 
Here is the interpretation of this (you can see that BIND is now dual-stack): 
 
IP version Address  Transport Port  Service 
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IPv4  127.0.0.1 tcp  953  rndc 
IPv4  127.0.0.1 tcp  53  zone transfers 
IPv4  127.0.0.1 udp  53  DNS queries 
IPv4  192.168.1.11 tcp  53  zone transfers 
IPv4  192.168.1.11 udp  53  DNS queries 
 
IPv6  ::1  tcp  953  rndc 
IPv6  any  tcp  53  zone transfers 
IPv6  any  udp  53  DNS queries 

 
 
10.4.3 – DNS Lab 3: Publish Public IP Addresses on a Dual Stack DNS Service 
 
In addition to providing free tunneled IPv6 service, Hurricane Electric also provides free hosting of dual 
stack DNS resource records. If you have signed up for their tunneled service, you can also use their free 
DNS service. You are limited to no more than 25 domains, and only certain resource records are 
supported (although all you might need for any dual-stack testbed network are included). You need to 
register the Hurricane Electric nameservers (ns2.he.net and ns3.he.net) as the authoritative DNS servers 
for your domain (this is done at your domain registrar, e.g. godaddy.com). I recommend registering 
nameserver addresses with the appropriate TLD DNS servers, which any domain registrar can do. 
However, only a few can current allow you to register both IPv4 and IPv6 addresses. One that does is 
godaddy, so this lab has you obtain a domain from them. If you prefer to use an existing domain, ask 
your domain registrar if they support registering nameservers with the TLD nameservers with both IPv4 
and IPv6 (some do). If not, you can obtain a new domain from any registrar that supports this. If you use 
any domain registrar other than godaddy, consult that registrar on how to do the steps below. 
 
You will be using the nameservers ns2.he.net and ns3.he.net at Hurricane Electric to publish your 
records. These are both dual stack DNS servers (ns1.he.net is IPv4 only). As of the writing of this lab, 
those have the following IP addresses. You should verify that these are still correct when you do the lab, 
by pinging those nodenames. 
 
 nameserver IPv4 address  IPv6 address 

 ns2.he.net 216.218.131.2  2001:470:200::2 

 ns3.he.net 216.218.132.2  2001:470:300::2 

 
Step 1 – Obtain a domain from godaddy (www.godaddy.com).  
 

Not all TLDs currently support registering of IPv6 nameserver addresses, so choose a domain 
name that ends in .com, .net or .org, unless you know for certain that your preferred TLD 
supports this. 
 

Step 2 –Register the external IPv4 addresses of your nameservers with the TLD nameservers.  
 

Bring up the godaddy Domain Manager (MY PRODUCTS / Domains / Domain Manager). Find 
your new domain name in the list of domains you have obtained from godaddy (e.g. v6lab.com) 
and click on it. In the lower left of the resulting domain specific page, locate the Host Summary 
box. This box contains nodenames for this domain that you have previously registered with the 
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TLD nameservers. With a new domain, there should not be any (it will show No Hosts). Click on 
the add link. For Host name enter ns2 (no domain name). For host IP 1 enter 216.218.131.2. Do 
not try to enter the IPv6 address now as host IP 2 (it won’t work). Click on OK. In the 
confirmation box, click on OK again. Click on the add link again (if it is busy, try again in a 
minute). For Host name, enter ns3. For host IP 1, enter 216.218.132.2. Click on OK. In the 
confirmation box, click on OK again. Refresh the webpage. You should now see two nodenames 
in the Host Summary box (NS2 and NS3).  
 

Step 3 – Register the IPv6 addresses of your nameservers with the TLD nameservers. 
 

Click on the edit link after NS2. For Host IP 2, enter 2001:470:200::2. Click on OK. In the 
confirmation box, click OK again. Click on the edit link after NS3. For Host IP 2, enter 
2001:470:300::2. Click on OK. In the confirmation box, click on OK again.  

 
Step 4 – Set authoritative nameservers. 
 

Change the authoritative nameservers for your new domain to the names you just registered (in 
my case that was ns2.v6lab.com and ns3.v6lab.com). In the Domain Manager page for your 
domain name, locate the heading “Nameservers”. There will probably be two godaddy 
nameservers listed there initially (e.g. NS21.DOMAINCONTROL.COM and 
NS22.DOMAINCONTROL.COM). We will replace those with the HE nameservers, using our 
registered nameserver names. Click on the Manage  link under Nameservers. There are four 
options. Choose “I have specific nameservers for my domain”. For Nameserver 1, enter 
ns2.v6lab.com (use your domain name, not v6lab.com), and for Nameserver 2, enter 
ns3.v6lab.com (ditto). Click on OK. In the confirmation box, click on OK again. After a couple of 
minutes, refresh the webpage. Under Nameservers, you should now see NS2.V6LAB.COM and 
NS3.V6LAB.COM (only with your domain name instead of v6lab.com). It may take several hours 
(up to 24) for these records to propagate to the entire Internet (due to DNS caching). Aside from 
renewing the domain from time to time, or changing the authoritative nameservers for the 
domain, we will not need to do anything further with this domain at godaddy. 

 
Step 5 – Add your new domain to the free DNS service at Hurricane Electric.  
 

Go to dns.he.net, and log in with the same credentials you used to obtain tunneled service. Click 
on Add a new domain. For Domain Name enter the name of your new domain (e.g. v6lab.com), 
then click on Add Domain! You should now see your new domain name in the list of Active 
Domains for this account. Click on the second icon (edit domain) before that domain name. 

 
Step 6 – Manage the new zone.  
 

First delete ns1.he.net. To do this, click on the “minus sign” in the red circle on that line. You 
may need to “allow scripted controls” depending on your browser. In the “script prompt” enter 
the word “DELETE” and click on OK.  
 
Click on the New A tab. In the Create New A Record window, for Name enter bsd1. For Content, 
enter the external IPv4 address of your bsd machine (e.g. 12.34.56.101). Click on the Submit 
button. You should now see the new A record appear.  
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Click on the New AAAA tab. In the Create New AAAA Record window, for Name, enter bsd1. For 
Content, enter the IPv6 address of your bsd server (e.g. 2001:470:1f05:c65::11). You should now 
see your new AAAA record appear. Note that there is no “internal” vs “external” IP address in 
IPv6 (as there is in IPv4) – the same IPv6 address is used internally and externally – NO NAT! 
Even though you would be using the same IPv6 addresses, you still want a DNS external view (or 
separate DNS server for external users), which publishes the IPv6 addresses of only those nodes 
that you want external users to be able to access. 
 
Click on the New MX tab. In the Create New MX Record window, for Name, enter v6lab.com. For 
Content, enter bsd1.v6lab.com. Leave the other fields as default. Click on the Submit button. You 
should now see your new MX record appear. 
 

Step 7 – Create reverse zone and publish PTR records.  
 

First you need to go back to tunnelbroker.net and bring up your tunnel details. There are five 
RDNS delegation items. Click on one of them and select Delegate to HE.NET Nameservers. Click 
on the Return to Main link. You should see the five HE nameservers listed there now 
(ns1.he.net, ..., ns5.he.net). Return to the FreeDNS management webpage. Click on Add a new 
reverse.  In the resulting window, for Prefix, enter 2001:470:1f05:c65::/64 (use your own routed 
64 prefix).  Click on the edit icon on that line, and add any IP addresses and the nodenames they 
should resolve to. For example, for Address enter ::11, and for Hostname, enter 
bsd1.v6lab.com. Click on Submit. You should now see information on the added IPv6 PTR 
record: 
 
 Parent Block  Address   Hostname 
 2001:470:1f05:c65: :11   bsd1.v6lab.com 
 
Note: providing reverse lookup for your IPv4 addresses will require whoever manages those 
addresses (probably your IPv4 ISP) to either publish the appropriate PTR records, or delegate 
the reverse zone for your IP addresses to you to manage. You could delegate them to the HE 
Free DNS service, if you like. 

 
Step 8 – You can verify this configuration immediately by using nslookup with ns2.he.net as the server: 
 
 C:\>nslookup - ns2.he.net 

 Default Server:  ns2.he.net 

 Address:  2001:470:200::2 

 

 > bsd1.v6lab.com 

 Server:  ns2.he.net 

 Address:  2001:470:200::2 

 

 Name:    bsd1.v6lab.com 

 Addresses:  2001:470:1f05:c65::11 

           120.89.47.101 

 

 > 2001:470:1f05:c65::11 

 Server:  ns2.he.net 

 Address:  2001:470:200::2 
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 Name:    bsd1.v6lab.com 

 Address:  2001:470:1f05:c65::11 

 

 > set q=mx 

 > v6lab.com. 

 Server: ns2.he.net 

 Address: 2001:470:200::2 

 

 v6lab.com MX preference = 10, mail exchanger = bsd1.v6lab.com 

 bsd1.v6lab.com AAAA IPv6 addres = 2001:470:1f05:c65::11 

 bsd1.v6lab.com internet address = 12.34.56.101 

 

 > exit 

 

 C:\> 

 
Once these DNS records have propagated, anyone in the world should be able to access your bsd server 
using your fully qualified domain name (e.g. bsd1.v6lab.com), over IPv4 or IPv6. Again, this is subject to 
the rules in your firewall. 
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10.5 – Project 5: Dual Stack Web Server 
 
This project is the simplest way to provide typical dual stack services for both internal and external 
users. This can be applied to making almost any web application available in dual stack. 
 
The four labs involve deploying Apache 2.2 on FreeBSD. It can easily be deployed on Linux, and 
information on doing that is widely available online and in other books. The changes described here to 
support dual-stack operation should work in any deployment of Apache 2.2 (assuming the underlying 
Operating System supports dual stack). 
 
The notes and configuration files below were derived from some at www.purplehat.org. I assume 
responsibility for any errors introduced in including their work in this book. There is no support available 
for this either from me or the folks at purplehat.org.  
 
All popular web browsers support dual-stack operation. I have personally verified the following web 
browsers to support IPv6: 
 

 Microsoft Internet Explorer 7 and later 

 Mozilla Firefox 3.5 
 
This information covers only the basic aspects of installing and running Apache on FreeBSD. Additional 
documentation on the features used here, and many others, are available online and in various books 
covering Apache administration. 
 
 
10.5.1 – Web Server Lab 1: Basic Dual Stack Web Server – Apache on FreeBSD 
 
Step 1 – Create SSL digital certificate for Apache.  
 

There is no passphrase for private key. If you know what you’re doing, you can change the 
Country Name, State, Locality, Org and Org Unit – if you have a real domain, you can change the 
domain name, but change it everywhere - all other fields should be as shown. 

 
 # mkdir –p /etc/ssl/apache 

 # cd /etc/ssl/apache 

 

 # openssl genrsa –out serv.key 1024 

 

 # openssl req –new –key serv.key –out serv.csr 

 Country Name (2 letter code) [AU]:PH 

 State or Province Name (full name) [Some-State]:Cebu 

 Locality Name (eg, city) []:Cebu City 

 Organization Name (eg, company) [Internet Widgets Pty Ltd]:InfoWeapons 

 Organizational Unit Name (eg, section) []:IT 

 Common Name (eg, YOUR name) []:bsd1.v6lab.com 

 Email Address []: 

 

 Please enter the following „extra‟ attributes 

 to be sent with your certificate request 

 A challenge password []:  

 An optional company name []: 
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 # openssl x509 –req –days 3650 –in serv.csr –signkey serv.key –out serv.crt 

 Signtature ok 

 subject=/C=PH/ST=Cebu/O=InfoWeapons/OU=IT/CN=www.dummy.org 

 Getting Private key 

 

 # chmod 0400 /etc/ssl/apache/serv.key 

 # chmod 0400 /etc/ssl/apache/serv.crt 

 

Step 2 – Install Apache 2.2 from the FreeBSD ports: 
 
 # cd /usr/ports/www/apache22 

 # make all install clean 

 ... 

 

 Select: IPv6 (on by default) 

 
Step 3 – Edit file /usr/local/etc/apache22/httpd.conf  
 
 ... 

 ServerAdmin webmaster@v6lab.com 

 ... 

 ServerName bsd1.v6lab.com:80 

 ... 

 Listen 0.0.0.0:80 

 ... 

 # Various default settings 

 Include etc/apache22/extra/httpd-default.conf 

 

 # Secure (SSL/TLS) connections 

 Include etc/apache22/extra/httpd-ssl.conf 

 ... 

 

Step 4 – Edit file /usr/local/etc/apache22/extra/httpd-ssl.conf 
 
 ... 

 Listen 0.0.0.0:443 

 ... 

 ServerName bsd1.v6lab.com:443 

 ...  

 ServerAdmin webmaster@v6lab.com 

 ... 

 SSLCertificateFile “/etc/ssl/apache/serv.crt” 

 ... 

 SSLCertificateKeyFile “/etc/ssl/apache/serv.key” 

 ... 

 

Step 5 – Edit file /etc/rc.conf, to enable Apache server on boot 
 

 ... 

 apache22_enable=”YES” 

 ... 

 

Step 6 – Check configuration file, fix any reported problems 
 
 # apachectl configtest 

 
Step 7 – Edit file /boot/loader.conf – to load a couple of kernel modules on boot 
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 accf_data_load=”YES” 

 accf_http_load=”YES” 

 
Step 8 – manually load kernel modules for now (so we don’t have to reboot now) 
 
 # kldload accf_data.ko 

 # kldload accf_http.ko 

 

Step 9 – Start Apache for the first ime, verify httpd is running. If not, check logs in /var/logs 
 

 # /usr/local/sbin/apachectl start 

 # ps –ax | grep httpd 

 ... (should see several instances of httpd running) 

 

Step 10 – Test over IPv4. 
 

Use the IPv4 numeric address to insure connection over IPv4. Note that the SSL connection will 
report an untrusted certificate – allow connection and add an exception). 
 

 Non-secure: try to surf to http://192.168.1.11 

 Secure: try to surf to https://192.168.1.11  

 

Step 11 – Use netstat to see what ports Apache is listening to (output edited): 
 
 # netstat -na 

 Active Internet connections (including servers) 

 Proto Recv-Q Send-Q  Local Address          Foreign Address        (state) 

  

 tcp4       0      0 *.443                  *.*                    LISTEN 

 tcp4       0      0 *.80                   *.*                    LISTEN 

 # 

 

 Here is the interpretation of this (you can see that Apache is now IPv4-only): 
 
 IP version Address Transport Port  Service 

 

 IPv4  any  tcp  80  HTTP 

 IPv4  any  tcp  443  HTTPS 

 

Step 12 – Open appropriate ports in firewall to allow access to web server from outside via IPv4 
 

To do this, surf to the web interface on the m0n0wall (http://192.168.1.1), and log in (user = 
admin, password = mono). 
 
Create the necessary IPv4 firewall rules: Click on the Firewall / IPv4 Rules link. No new LAN rules 
are required. On the WAN tab, enter the following rules. Open port 80 for HTTP (non-secure) 
and/or port 443 for HTTPS (secure). 

 
 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 192.168.1.11, Port = 80 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 192.168.1.11, Port = 443 
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10.5.2 – Web Server Lab 2: Migrate Apache to Dual Stack 
 
Step 1 – Edit file /usr/local/etc/apache22/httpd.conf to enable IPv6 for HTTP 
 
 ... 

 Listen 0.0.0.0:80 

 Listen [::]:80 

 ... 

 

Step 2 – Edit file /usr/local/etc/apache22/extra/httpd-ssl.conf to enable IPv6 for HTTPS 
 
 ... 

 Listen 0.0.0.0:443 

 Listen [::]:443 

 ... 

 
Step 3 – Stop and restart Apache, verify httpd is running. If not, check logs in /var/logs 
 

 # apachectl stop 

 # apachectl start 

 # ps –ax | grep httpd 

 ... (should see several instances of httpd running) 

 

Step 4 – Use netstat to see what ports Apache is listening to (output edited): 
 
 # netstat -na 

 Active Internet connections (including servers) 

 Proto Recv-Q Send-Q  Local Address          Foreign Address        (state) 

  

 tcp46      0      0 *.443                  *.*                    LISTEN 

 tcp46      0      0 *.80                   *.*                    LISTEN 

 # 

 

 Here is the interpretation of this (you can see that Apache is now dual-stack): 
 
 IP version Address Transport Port  Service 

 

 IPv4  any  tcp  80  HTTP 

 IPv4  any  tcp  443  HTTPS 

 

 IPv6  any  tcp  80  HTTP 

 IPv6  any  tcp  443  HTTPS 

 
Step 5 – Test over IPv6.  
 

Use the numeric IPv6 address to insure use of IPv6. Remember to enclose any numeric IPv6 
address in URLs in square brackets. Use the IPv6 address of your bsd server. The SSL connection 
will report an untrusted certificate. Allow the connection and add an exception. 
  
 Non-secure: try to surf to http://[2001:470:1f05:c65::11] 

 Secure: try to surf to https://[2001:470:1f05:c65::11]  
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Step 6 – Open appropriate ports in firewall to allow access to web server from outside via IPv6 
 

To do this, surf to the web interface on the m0n0wall (http://192.168.1.1), and log in (user = 
admin, password = mono). 
 
Create the necessary IPv6 firewall rules: Click on the Firewall / IPv6 Rules link. No new LAN rules 
are required. On the WAN tab, enter the following rules. Open port 80 for HTTP (non-secure) 
and/or port 443 for HTTPS (secure). 

 
 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 2001:470:1f05:c65::11, Port = 80 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 2001:470:1f05:c65::11, Port = 443 

 

 

 
10.5.3 – Web Server Lab 3: Install PHP, Install PHP test script and run it 
 
Many web applications are built using PHP. This lab shows that it not only runs over IPv6, it can provide 
information as to the version of IP and the specific address that someone connected from (IPv4 or IPv6). 
This allows you to generalize web applications to do different things depending on IP version used for 
the connection (if desired). 
 
Step 1 – Install PHP5 from the FreeBSD ports tree: 
 
 # cd /usr/ports/lang/php5 

 # make config ; make install clean 

 

 Select: APACHE 

 

Step 2 – Create file /usr/local/etc/php.ini 
 
 # cd /usr/local/etc 

 # cp php.ini-recommended php.ini 

 
Step 3 – Edit file /usr/local/etc/php.ini  (just created) 
 
 old: 

  ;session.save_path=”/tmp” 

 

 new: 

  session.save_path=”/tmp” 

 

Step 4 – Edit file /usr/local/etc/apache22/httpd.conf 
 

 ... 

 <IfModule dir_module> 

  DirectoryIndex index.html index.php index.php5 

 </IfModule> 

 ... 

 <IfModule mime_module> 

  TypesConfig etc/apache22/mime.types 

  AddType application/x-compress .Z 
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  AddType application/x-gzip .gz .tgz 

  AddType application/x-httpd-php .php 

  AddType application/x-httpd-php-source .phps 

 </IfModule> 

 
Step 5 – Reboot the server, then log back in with root privilege 
 
 # reboot 

 ... 

 
Step 6 – Create file /usr/local/www/apache22/data/test.php with following contents 
 
 <?php phpinfo(); ?> 

 
Step 7 – Test Basic PHP operation on both IPv4 and IPv6 
 
 Surf to http://192.168.1.11/test.php 

 Surf to https:// 192.168.1.11/test.php 

 

 Surf to http://[2001:470:1f05:c65::11]/test.php 

 Surf to https:// [2001:470:1f05:c65::11]/test.php 

 
Note that the output of phpinfo() includes the IP addresses of the client and server nodes. This will 
indicate whether you are connecting over IPv4 or IPv6. Look for the variables SERVER_ADDR (the IP 
address of the Apache server node) and REMOTE _ADDR (the IP address of the client node from which 
the connection was made). If the connection was over SSL, there will be information about the version 
of SSL and the certificate(s) used. 
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10.6 – Project 6: Dual Stack E-mail Server 
 
E-mail is another major service that you can deploy for dual-stack access, for both internal and external 
users. This is a bit more complicated than providing dual-stack web access, but still not that difficult. You 
can deploy this with Open Source (Postfix and Dovecot recommended), or using Exchange Server 2007 
running on Window Server 2008 SP1. Again, Exchange Server 2007 is available as a free 120 day 
evaluation. The labs in this book deploy postfix and dovecot on FreeBSD. Deploying these on Linux is not 
much more difficult, but the steps are quite different. 
 
The Open Source Postfix/Dovecot server assumes you have already deployed FreeBSD with dual stack 
networking. We will also assume that you already have deployed the Apache web server with full 
support for dual-stack, and have published relevant resource records in a public dual stack DNS (we will 
add  an MX record to those).  
 
It is possible to deploy Postfix and Dovecot in far more sophisticated ways. This deployment has been 
kept very simple on purpose to allow you to concentrate on the IPv6 aspects, not the e-mail or database 
aspects of a more complete deployment. In this deployment, the user accounts and passwords are the 
same as the FreeBSD logins. Mailboxes are in the FreeBSD user’s home directory (under directory mail). 
To add another mail user create a new FreeBSD account (using adduser or sysinstall). To change your 
mail password, change your FreeBSD password. A more sophisticated deployment might keep 
usernames and passwords in MySQL, use virtual mailboxes, and even deploy postfixadmin for web 
based administration. There are many online and book sources of information on how to do this. Even 
the most sophisticated deployments can be migrated to dual stack using the techniques described here. 
 
Most e-mail clients today are dual-stack (they support both IPv4 and IPv6). I have personally verified the 
following clients to support IPv6 on Windows 7: 
 

 Microsoft Outlook (from Office 2007) 

 Microsoft Live Mail Client 

 Thunderbird Mail Client 
 
 
10.6.1 – Mail Server Lab 1: Deploy Postfix MTA for IPv4 Operation 
 
Step 1 – Build and install postfix from FreeBSD ports (this will also build and install dovecot) 
 
 # cd /usr/ports/mail/postfix 

 # make install clean 

  (in postfix options, select DOVECOT and TLS) 

  (in dovecot options, accept defaults) 

 ... 

 You need user “postfix” added to group “mail”. 

 Would you like me to add it [y]? y 

 Would you like to activate Postfix in /etc/mail/mailer.conf [n]? y 

 
Step 2 – Stop sendmail (which is installed by default in FreeBSD) 
 
 # /etc/rc.d/sendmail forcestop 
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Step 3 – Edit file /etc/rc.conf  to disable sendmail and enable postfix (add following lines) 
 

 sendmail_enable=”NO” 

 sendmail_submit_enable=”NO” 

 sendmail_outbound_enable=”NO” 

 sendmail_msp_queue_enable=”NO” 

 postfix_enable=”YES” 

 
Step 4 – Edit file /etc/periodic.conf, add following contents 
 
 daily_clean_hoststat_enable=”NO” 

 daily_status_mail_rejects_enable=”NO” 

 daily_status_include_submit_mailq=”NO” 

 daily_submit_queuerun=”NO” 

 

Step 5 – Create a self-signed SSL digital certificate (use appropriate country/state/etc) 
 
 # mkdir -p /etc/ssl/postfix 

 # cd /etc/ssl/postfix 

 # openssl req -new -x509 -nodes -out smtpd.pem -keyout smtpd.pem -days 3650 

 Generating a 1024 bit RSA private key 

 ..............................................................++++++ 

 .....................................++++++ 

 writing new private key to 'smtpd.pem' 

 ----- 

 You are about to be asked to enter information that will be incorporated 

 into your certificate request. 

 What you are about to enter is what is called a Distinguished Name or a DN. 

 There are quite a few fields but you can leave some blank 

 For some fields there will be a default value, 

 If you enter '.', the field will be left blank. 

 ----- 

 Country Name (2 letter code) [AU]:PH 

 State or Province Name (full name) [Some-State]:Cebu 

 Locality Name (eg, city) []:Cebu City 

 Organization Name (eg, company) [Internet Widgits Pty Ltd]:InfoWeapons 

 Organizational Unit Name (eg, section) []:IT 

 Common Name (eg, YOUR name) []:bsd1.v6lab.com 

 Email Address []:  

 

 # chmod 640 /etc/ssl/postfix/smtpd.pem 

 # chgrp -R postfix /etc/ssl/postfix 

 
Step 6 – Edit file /usr/local/etc/postfix/main.cf, make appropriate changes shown below 
  
 softbounce = no 

 

 myhostname = bsd1.v6lab.com 

 

 mydomain = v6lab.com 

 

 myorigin = $myhostname 

 

 mydestination = $myhostname, localhost, $mydomain 

 

 mynetworks_style = subnet 

 

 mynetworks = 192.168.1.0/24 
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 # TLS CONFIG 

 
 smtp_use_tls = yes 

 smtpd_use_tls = yes 

 smtp_tls_note_starttls_offer = yes 

 smtpd_tls_key_file = /etc/ssl/postfix/smtpd.pem 

 smtpd_tls_cert_file = /etc/ssl/postfix/smtpd.pem 

 smtpd_tls_CAfile = /etc/ssl/postfix/smtpd.pem 

 smtpd_tls_loglevel = 0 

 smtpd_tls_received_header = yes 

 smtpd_tls_session_cache_timeout = 3600s 

 tls_random_source = dev:/dev/urandom     

 

 
Step 7 – Edit file /usr/local/etc/postfix/master.cf 
 

 ... 

 smtps     inet  n       -       n       -       -       smtpd 

   -o smtpd_tls_wrappermode=yes 

 ... 

 
Step 8 – Edit file /etc/aliases  
 
 Change "root" to an email address you want system messages to be mailed to: 
 
 root: webmaster@v6lab.com 

 
Step 9 – Create aliases.db file from /etc/aliases file 
 
 # /usr/bin/newaliases 

 
Step 10 – Start postfix manually: 
 

 # /usr/local/etc/rc.d/postfix start 

 

Step 11 – Test postfix MTA by doing telnet to port 25 using IPv4 address 
 

 # telnet 192.168.1.11 25 

 Trying 192.168.1.11... 

 Connected to bsd1.v6lab.com. 

 Escape character is '^]'. 

 220 bsd1.v6lab.com ESMTP Postfix 

 ehlo x.com 

 250-bsd1.v6lab.com 

 250-PIPELINING 

 250-SIZE 10240000 

 250-VRFY 

 250-ETRN 

 250-STARTTLS 

 250-ENHANCEDSTATUSCODES 

 250-8BITMIME 

 250 DSN 

 quit 

 221 2.0.0 Bye 

 Connection closed by foreign host. 

 # 
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10.6.2 – Mail Server Lab 2: Deploy Dovecot POP3/IMAP Mail Retrieval Server 
 
Dovecot is a very powerful server that implements both the POP3 and IMAP mail retrieval from 
mailboxes created and loaded by the Postfix MTA. It supports IPv4 and IPv6 (both with and without TLS). 
Note that dovecot was built and installed in the previous lab, in addition to postfix. Now we will 
configure and start it. 
 
Step 1 – Edit file /etc/rc.conf to start Dovecot at boot 
 
 ... 

 dovecot_enable=”YES” 

 ... 

 
Step 2 – Copy Dovecot configuration files 
 
 # cd /usr/local/etc 

 # cp /usr/local/share/examples/dovecot/dovecot.conf /etc/local/etc 

 
Step 3 – Edit file /usr/local/etc/dovecot.conf, make the following changes: 
 
 protocols = imap imaps pop3 pop3s 

 

 ssl = yes 

 ssl_cert_file = /etc/ssl/postfix/smptd.pem 

 ssl_key_file = /etc/ssl/postfix/smtpd.pem 

 

 login_greeting = Dovecot Ready. 

  

 protocol lda { 

   postmaster_address = postmaster@v6lab.com 

 } 

  

 auth default { 

   mechanisms = plain login 

 

     client { 

       path = /var/spool/postfix/private/auth 

        mode = 0660 

       user = postfix 

       group = postfix 

   } 

 } 

 
Step 4 – Start dovecot 
 

# /usr/local/etc/rc.d/dovecot start 

 
If there are problems, look in /var/log/maillog 

 
Step 5 – Use netstat to see what ports postfix and dovecot are listening to (edited): 
 

 # netstat -na 

 Active Internet connections (including servers) 
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 Proto Recv-Q Send-Q  Local Address          Foreign Address        (state) 

 tcp4       0      0 *.995                  *.*                    LISTEN 

 tcp4       0      0 *.110                  *.*                    LISTEN 

 tcp4       0      0 *.993                  *.*                    LISTEN 

 tcp4       0      0 *.143                  *.*                    LISTEN 

 tcp4       0      0 *.465                  *.*                    LISTEN 

 tcp4       0      0 *.25                   *.*                    LISTEN 

 

 Here is the interpretation of this (you can see that email is now IPv4-only): 
 
 IP version Address  Transport Port  Service 
 
 IPv4  any  tcp  25  SMTP, SMTPS 
 IPv4  any  tcp  465  alternative SMTP 
 IPv4  any  tcp  110  POP3 
 IPv4  any  tcp  995  POP3S  
 IPv4  any  tcp  143  IMAP 
 IPv4  any  tcp  993  IMAPS 
 
Step 6 – Test POP3 protocol by connecting with telnet on port 110, using IPv4 
 
 # telnet 192.168.1.11 110 

 Trying 192.168.1.11... 

 Connected to bsd1.v6lab.com. 

 Escape character is '^]'. 

 +OK Dovecot ready. 

 user admin 

 +OK 

 pass admin$pw 

 +OK Logged in. 

 list 

 +OK 0 messages: 

 . 

 quit 

 +OK Logging out. 

 Connection closed by foreign host. 

 # 

 

Step 7 – Test IMAP protocol by connecting with telnet on port 143, using IPv4 
 

 # telnet 192.168.1.11 143 

 Trying 192.168.1.11... 

 Connected to bsd1.v6lab.com. 

 Escape character is '^]'. 

 * OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE STARTTLS 

 AUTH=PLAIN AUTH=LOGIN] Dovecot ready. 

 100 login admin admin$pw 

 100 OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE SORT 

 SORT=DISPLAY THREAD=REFERENCES THREAD=REFS MULTIAPPEND UNSELECT IDLE CHILDREN 

 NAMESPACE UIDPLUS LIST-EXTENDED I18NLEVEL=1 CONDSTORE QRESYNC ESEARCH ESORT  

 SEARCHRES WITHIN CONTEXT=SEARCH LIST-STATUS] Logged in 

 200 logout 

 * BYE Logging out 

 200 OK Logout completed. 

 Connection closed by foreign host. 

 # 
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Step 8 – Test mail server with email client using POP3 and IMAP, using IPv4 
 
 Configure any email client (e.g. Outlook) as follows: 
 
 Account type    POP3 

 Incoming mail server  192.168.1.11 

 Outgoing mail server (SMTP) 192.168.1.11 

 User Name    System Administrator 

 Login     admin 

 Password    admin$pw 

 
 Try sending and retrieving messages from your Windows node inside the LAN. 
 
 Change account type to IMAP and repeat test 
 
Step 9 – Open appropriate ports in firewall to allow access to mail server from outside 
 

To do this, surf to the web interface on the m0n0wall (http://192.168.1.1), and log in (user = 
admin, password = mono). 
 
Create the necessary IPv4 firewall rules: Click on the Firewall / IPv4 Rules link. No new LAN rules 
are required. On the WAN tab, enter the following rules. You need to allow at least incoming 
SMTP. You can allow incoming POP3 and/or IMAP if you want people to be able to retrieve their 
email from outside the LAN, in either plaintext (110, 143) and/or secure versions (995, 993). 
Some administrators allow POP3S and IMAPS from outside, but POP3 and IMAP only from the 
LAN. In that case, you would allow incoming SMTP, POP3S and IMAPS, but not POP3 or IMAP. 
 

 
 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 192.168.1.11, Port = 25 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 192.168.1.11, Port = 110 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 192.168.1.11, Port = 143 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 192.168.1.11, Port = 995 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 192.168.1.11, Port = 993 

 

Step 10 – Publish MX record in public DNS server 
 
 This allows other mail serves to determine the preferred mail server(s) for your domain.  
 
When a local user (one with an account on this email server) sends a message to another local user, the 
email never leaves the LAN. It is sent from the first user to the mail server via SMTP, IMAP or webmail, 
the immediately delivered to the mailbox of the local recipient, who can retrieve it with POP3, IMAP or 
possibly webmail.  
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When a remote user (one with an account on some other email server) sends a message to one of your 
local users, they deliver the message to their email server via SMTP, IMAP or webmail. Sometime later, 
their mail server will transfer outgoing mail to your domain by doing a DNS retrieval to find the MX 
record for your domain name. It will get a prioritized list of names of preferred mail servers for your 
domain (often only one). For each mailserver name (until it succeeds, or runs out of names) it will then 
retrieve A/AAAA records, and obtain a list of IPv4 and/or IPv6 addresses for that name. If IPv6 transport 
is available, it will try IPv6 first then fail back to IPv4. If no IPv6 transport is available, it will try IPv4 
immediately.  
 
 
10.6.3 – Mail Server Lab 3: Migrate Postfix and Dovecot to Dual Stack 
 
Now that we have a working IPv4-only basic e-mail server up and running, let’s migrate it to dual stack! 
 
Step 1 – Edit file /usr/local/etc/postfix/main.cf 
 

After “inet_interfaces” section, add the following lines: 
 
 # inet_protocols – specify which IP address families to support 

 # options: “ipv4”, “ipv6”, “ipv4, ipv6”, “all” 

 inet_protocols = all 

 
Add your IPv6 networks to mynetworks specification: 
 
 mynetworks = 127.0.0.0/8, 192.168.1.0/24,  

  [ipv6:::1/128], [ipv6:2001:470:1f05:c65::/64] 

 
Step 2 – Edit file /usr/local/etc/dovecot.conf 
 

Add IPv6 unspecified address to Listen list (be sure to uncomment line): 
 
 listen = *, [::] 

 
Step 3 – Retart postfix and dovecot servers 
 

# /usr/local/etc/rc.d/postfix restart 

postfix/postfix-script: stopping the Postfix mail system 

postfix/postfix-script: starting the Postfix mail system 

 

# /usr/local/etc/rc.d/dovecot restart 

Stopping dovecot. 

Starting dovecot. 

 
Step 4 – Use netstat to verify which ports postfix and dovecot are listening to (edited) 
 

# netstat -na 

Active Internet connections (including servers) 

Proto Recv-Q Send-Q  Local Address          Foreign Address        (state) 

tcp6       0      0 *.995                  *.*                    LISTEN 

tcp4       0      0 *.995                  *.*                    LISTEN 

tcp6       0      0 *.110                  *.*                    LISTEN 

tcp4       0      0 *.110                  *.*                    LISTEN 
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tcp6       0      0 *.993                  *.*                    LISTEN 

tcp4       0      0 *.993                  *.*                    LISTEN 

tcp6       0      0 *.143                  *.*                    LISTEN 

tcp4       0      0 *.143                  *.*                    LISTEN 

tcp6       0      0 *.465                  *.*                    LISTEN 

tcp4       0      0 *.465                  *.*                    LISTEN 

tcp6       0      0 *.25                   *.*                    LISTEN 

tcp4       0      0 *.25                   *.*                    LISTEN 

 

Here is the interpretation of this (you can see that email is now dual-stack): 
 
IP version Address  Transport Port  Service 
 
IPv4  any  tcp  25  SMTP, SMTPS 
IPv4  any  tcp  465  alternative SMTP 
IPv4  any  tcp  110  POP3 
IPv4  any  tcp  995  POP3S  
IPv4  any  tcp  143  IMAP 
IPv4  any  tcp  993  IMAPS 
 
IPv6  any  tcp  25  SMTP, SMTPS 
IPv6  any  tcp  465  alternative SMTP 
IPv6  any  tcp  110  POP3 
IPv6  any  tcp  995  POP3S  
IPv6  any  tcp  143  IMAP 
IPv6  any  tcp  993  IMAPS 

 
Step 5 – Test SMTP protocol by connecting with telnet on port 25 using IPv6 address 
 

# telnet 2001:470:1f05:c65::11 25 

Trying 2001:470:1f05:c65::11... 

Connected to 2001:470:1f05:c65::11. 

Escape character is '^]'. 

220 bsd1.v6lab.com ESMTP Postfix 

ehlo x.com 

250-bsd1.v6lab.com 

250-PIPELINING 

250-SIZE 10240000 

250-VRFY 

250-ETRN 

250-STARTTLS 

250-ENHANCEDSTATUSCODES 

250-8BITMIME 

250 DSN 

quit 

221 2.0.0 Bye 

Connection closed by foreign host. 

# 

 
Step 6 – Test POP3 protocol by connecting with telnet on port 110 using IPv6 address 
 

# telnet 2001:470:1f05:c65::11 110 

Trying 2001:470:1f05:c65::11... 

Connected to 2001:470:1f05:c65::11. 
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Escape character is '^]'. 

+OK Dovecot ready. 

user admin 

+OK 

pass admin$pw 

+OK Logged in. 

list 

+OK 0 messages: 

. 

quit 

+OK Logging out. 

Connection closed by foreign host. 

# 

 

Step 7 – Test IMAP protocol by connecting with telnet on port 143 using IPv6 address 
 

# telnet 2001:470:1f05:c65::11 143 

Trying 2001:470:1f05:c65::11... 

Connected to 2001:470:1f05:c65::11. 

Escape character is '^]'. 

* OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE STARTTLS 

AUTH=PLAIN AUTH=LOGIN] Dovecot ready. 

100 login admin admin$pw 

100 OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID ENABLE SORT 

SORT=DISPLAY THREAD=REFERENCES THREAD=REFS MULTIAPPEND UNSELECT IDLE CHILDREN 

NAMESPACE UIDPLUS LIST-EXTENDED I18NLEVEL=1 CONDSTORE QRESYNC ESEARCH ESORT  

SEARCHRES WITHIN CONTEXT=SEARCH LIST-STATUS] Logged in 

200 logout 

* BYE Logging out 

200 OK Logout completed. 

Connection closed by foreign host. 

# 

 

Step 8 – Open appropriate ports in firewall to allow access to mail server from outside 
 

To do this, surf to the web interface on the m0n0wall (http://192.168.1.1), and log in (user = 
admin, password = mono). 
 
Create the necessary IPv6 firewall rules: Click on the Firewall / IPv6 Rules link. No new LAN rules 
are required. On the WAN tab, enter the following rules. You need to allow at least incoming 
SMTP. You can allow incoming POP3 and/or IMAP if you want people to be able to retrieve their 
email from outside the LAN, in either plaintext (110, 143) and/or secure versions (995, 993). 
Some administrators allow POP3S and IMAPS from outside, but POP3 and IMAP only from the 
LAN. In that case, you would allow incoming SMTP, POP3S and IMAPS, but not POP3 or IMAP. 
 
 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 2001:470:1f05:c65::11, Port = 25 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 2001:470:1f05:c65::11, Port = 110 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 2001:470:1f05:c65::11, Port = 143 

 

 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 2001:470:1f05:c65::11, Port = 995 
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 Action = Pass, Proto = TCP, Source = any, Port = any,  

 Destination = 2001:470:1f05:c65::11, Port = 993 

 

 

 
10.6.4 – Mail Server Lab 4: Deploy Squirrelmail Webmail Access 
 
Squirrelmail is a web based application written in PHP5. It is typical of many web based applications. It 
has no specific support for IPv6, but because you are installing it on a web server (Apache) that has been 
configured for dual-stack, it works dual stack with no further effort (unless they display or allow you to 
specify numeric IP addresses). Most web applications “get a free ride” in this manner. The same is true 
for Microsoft IIS based web applications. Once IIS is configured to run dual-stack, most IIS web 
applications will run dual-stack with no modifications. 
 
Step 1 – Build and install SquirrelMail from the FreeBSD ports. 
 

# cd /usr/ports/mail/squirrelmail 

# make config ; make install clean 

 
Step 2 – Increase the upload file size limit from 2MB to 8MB. 
 

# edit /usr/local/etc/php.ini 

  

old: upload_max_filesize = 2M 

 

new: upload_max_filesize = 8M 

 
Step 3 – Run the menu based SquirrelMail configuration utility.  
 

# cd /usr/local/www/squirrelmail 

# ./configure 

 
 Select menu item 2 (Server Settings) 

 Select menu item 1 (Domain) 

 Specify domain name as v6lab.com 

 

 Select menu item 2 (Server Settings) 

 Select menu item A (Update IMAP Settings) 

 Select menu item 8 (Server Software) 

 Specify server software as dovecot 

 

 Select menu item Q (Quit) 

 
Step 4 – Create Apache configuration file for SquirrelMail.  
 

Apache will load any configuration files found in directory /usr/local/etc/apache22/Includes. 
Create the file squirrelmail.conf. 
 
 # edit /usr/local/etc/apache22/Includes/squirrelmail.conf 

 
Add the following content: 
 
 Alias /squirrelmail “/usr/local/www/squirrelmail/” 
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 <Directory “/usr/local/www/squirrelmail/”> 

 Options None 

 AllowOverride None 

 Order allow,deny 

 Allow from all 

 </Directory> 

 
Step 5 – Restart Apache 
 

# /usr/local/etc/rc.d/apache22 restart 

Performing sanity check on apache22 configuration: 

Syntax OK 

Stopping apache22. 

Waiting for PIDS: 956. 

Performing sanity check on apache22 configuration: 

Syntax OK 

Starting apache22. 

# 

 

Step 6 – Test over IPv4 and IPv6 (https will also work): 
 

http://192.168.1.11/squirrelmail 

 

http://[2001:470:1f05:c65::11]/squirrelmail 

 
Once you are connected to SquirrelMail, login in with username admin, password admin$pw. 
Try sending and reading some emails. These will need to be sent to yourself 
(admin@v6lab.com), or you can create some more e-mail users by creating more FreeBSD logins 
(try sysinstall for menu based user management). If you have published your external A, AAAA 
and MX records on a public DNS server (as covered), and you have opened the appropriate ports 
on your firewall, your mail server can actually exchange mail with the outside world. Some mail 
servers may reject outgoing mail from your server if you don’t manage to publish the reverse 
DNS records for your public IPv4 addresses (this is not covered in the labs, as the records in 
question are managed by your IPv4 ISP). 
 
If you need access to another IPv6 capable mail server to exchange mail with, feel free to send 
me mail at lhughes@infoweapons.com or lhughes@hughesnet.org. Both are fully dual stacked. I 
will reply to all messages sent over IPv6. 

 
Step 7 – Review headers of a message sent over IPv6 
 
Note: this message was sent from a dual-stack Postfix/Dovecot/Squirrelmail mail server to Exchange 
2007 running on Windows Server 2008 SP1. This postfix server includes SASL authentication, otherwise 
is exactly like the one installed here. Here are the complete e-mail headers. 
 
MIME-Version: 1.0 

Received: from us1.homev6.com (2001:418:5403:3000::d) by ws2.infoweapons.com 

 (2001:418:5403:2400::10:11) with Microsoft SMTP Server (TLS) id 8.2.254.0; 

 Tue, 15 Jun 2010 10:53:18 +0800 

Received: from us1.homev6.com (localhost [IPv6:::1]) (Authenticated sender: 

 lhughes@homev6.com) by us1.homev6.com (Postfix) with ESMTPA id 4D6A7228C0; 

 Wed,  9 Jun 2010 09:56:32 +0800 (PHT) 
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Received: from 2001:418:5403:3000:64b6:40f9:5a20:8e5        (SquirrelMail 

 authenticated user lhughes@homev6.com)        by us1.homev6.com with HTTP; 

        Wed, 9 Jun 2010 09:56:32 +0800 

From: "lhughes@homev6.com" <lhughes@homev6.com> 

To: Lawrence Hughes <lhughes@infoweapons.com> 

CC: "lhughes@hughesnet.org" <lhughes@hughesnet.org> 

Date: Wed, 9 Jun 2010 09:56:32 +0800 

Subject: test from homev6.com squirrelmail 

Thread-Topic: test from homev6.com squirrelmail 

Thread-Index: AcsMNek444X4LFI5ShmQMwQtkcmv9w== 

Message-ID: <47abce3c4bc96bf3fc494417470c8532.squirrel@us1.homev6.com> 

Accept-Language: en-US 

Content-Language: en-US 

X-MS-Exchange-Organization-AuthAs: Anonymous 

X-MS-Exchange-Organization-AuthSource: ws2.infoweapons.com 

X-MS-Has-Attach: 

X-MS-TNEF-Correlator: 

user-agent: SquirrelMail/1.4.20-RC2 

Content-Type: text/plain; charset="iso-8859-1" 

Content-Transfer-Encoding: quoted-printable 

 
Received headers are in reverse order (the first one is the most recent). So, starting with the last 
Received header and working backwards: 
 

 Message was received from a node with IPv6 address 2001:418:5403:3000:64b6:40f9:5a20:8e5 
(which happens to be my Windows 7 workstation) by Squirrelmail running on us1.homev6.com 
(over HTTP, because this was submitted via Squirrelmail, as shown by “user-agent:”). This link 
used  SASL authentication (Authenticated user lhughes@homev6.com). 

 Message was then received from Squirrelmail running on us1.homev6.com with IPv6 address ::1 
(localhost) by Postfix running on the same node. Again, SASL authentication was used 
(Authenticated sender: lhughes@homev6.com). Sometime later, Postfix relayed the message 
onward since it was not addressed to a local domain. To do this, it did a DNS query for MX 
records for the destination domain (infoweapons.com) and found the preferred mail server for 
that domain. This nodename has both IPv4 (A) and IPv6 (AAAA) records defined for it, so it 
chose the preferred IPv6 address of the InfoWeapons Exchange server. 

 Message was then received from us1.homev6.com with IPv6 address 2001:418:5403:3000::d 
(still in my home LAN) by Exchange Server (Microsoft SMTP server) over TLS, at IPv6 address 
2001:418:5403:2400::10:11 (in the InfoWeapons LAN). 

 I then retrieved the message from the Exchange server at InfoWeapons (which does not add 
another Received header). Even though it is not documented in the headers, that retrieval was 
also done over IPv6 (using IMAP). Therefore this message went over IPv6 all the way from 
sender to recipient. 
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10.7 – Conclusion 
 
If you have done all of the above labs, you now have a fairly complete dual-stack testbed network, and 
are familiar with many of the things that you will need to do as a network administrator. Between the 
labs and the book, hopefully you now understand the following things: 
 

 It is not particularly difficult to obtain free tunneled IPv6 service, even using free components. 
You do not need to wait for your ISP to provide IPv6 service to go fully operational. Simple 
transition mechanisms simplify the migration to full dual stack operation. 

 Most operating systems, and many existing network applications (BIND, Apache, Postfix, 
Dovecot, ssh/sshd, etc) are already fully capable of supporting full dual-stack operation. 
Network configuration is not that different from IPv4. 

 Most web applications (Apache or IIS based) get a “free ride”, once the underlying web server 
has been migrated to dual-stack. In addition (although not covered in these labs), most 
Microsoft “.Net” applications get a free ride. 

 IPv4 NAT really doesn’t provide any useful function other than extending the life of the IPv4 
address space, and only then at very high price (in terms of lost capabilities and additional 
complexity). It adds no security in firewall architectures. NAT is a crutch you no longer need. 
IPv6 without NAT actually provides a simpler, better firewall architecture (no need for BINAT, 
proxy ARP, NAT traversal, etc). We are really just returning to the pre-NAT “classical” firewall 
architectures, not something new and untested. 

 There are only a few really new concepts in IPv6 that current network administrators need to 
master, such as tunneling, Application Layer Gateways, hexadecimal address representation, 
address scopes (e.g. link-local addresses), working without NAT, needing to provide Router 
Advertisement messages (for SAA to work), multicast and IPsec that actually work, etc. 
Everything else is remarkably similar to working with IPv4. 

 The supply of IPv4 addresses is really almost gone, and there is no alternative to this other than 
migration to IPv6. The timeline on this is sooner than most people realize. Probably before the 
end of 2011, the last address will have been allocated, and you have better be ready to support 
IPv6 if you want to keep your job (or have your organization continue operation) past that point. 

 
 
Congratulations, and welcome to the Second Internet as its newest citizen! 
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Appendix A – Cryptography & PKI 
 

Several topics in this book involve cryptography and/or PKI (Public Key Infrastructure). IPsec (Internet 
Protocol layer security) includes both AH (Authentication Header) and ESP (Encapsulating Security 
Payload). AH is used to do sender authentication of packets, and detection of tampering. Instead of 
using a combination of message digest (e.g. SHA1) with asymmetric cryptography (e.g. RSA), AH uses a 
keyed message digest, also called Hashed Message Authentication Code (HMAC). ESP does symmetric 
key encryption of the payload part of an IP packet. The symmetric key for this can be manually 
distributed (referred to as “shared secret key”), or automatically exchanged in a secure manner using 
Internet Key Exchange (IKE). IKE uses an application of asymmetric key cryptography called the Diffie-
Hellman Key Agreement algorithm, and a new kind of digital certificate called an IPsec Certificate to fully 
automate distribution of symmetric keys for IPsec.  
 
The cryptographic mechanisms used in these IP security protocols are explained in this chapter. If you 
are not already familiar with them, you should review this chapter before trying to understand the IP 
security protocols themselves. There are some good books listed in the bibliography that cover these 
cryptographic mechanisms in considerably more detail, if this chapter is not sufficient for you. I spent 
two years with VeriSign creating and delivering training on just these topics, and took an entire week to 
cover the topics in this chapter. What follows is a very concise coverage of these topics. 
 
 
A.1 – Cryptography Standards 
 
The X.509 digital certificate is the foundation of PKI. It was originally specified as part of the ITU-T 
(formerly CCITT) X.500 standard for directory services. The public key certificate was specified in part of 
this larger standard, as fascicle X.509, “The Directory: Public-key and attribute certificate frameworks”, 
July 1998. What is in current use is version 3 of this specification. This standard has been incorporated 
into the RFC standard set as RFC 5280, “Internet X.509 Public Key Infrastructure Certificate and 
Certificate Revocation List (CRL) Profile”, May 2008. The standards related to PKI and cryptography 
based on X.509 certificates are overseen by the PKIX Working Group of the IETF.  
 
Since X.500 was part of the OSI network standard, there are some artifacts of that origin in the X.509 
certificate, such as distinguished names, for example: 
 
 cn=Lawrence Hughes, o=InfoWeapons Corp., ou=Administration, c=PH 
 
RFC 5280 describes ways to integrate this OSI technology into TCP/IP, in addition to making all of the 
details of the certificate itself available to all for free. If this syntax looks familiar, it is also found in LDAP, 
which also was derived from the OSI X.500 technology. 
 
Some of the concepts covered in this chapter were first defined in a set of standards from RSA called 
PKCS (Public Key Cryptography Standards). For example, S/MIME was first defined in PKCS #7. There 
were a number of PKCS standards, the most important of which were: 
 

 PKCS #1 – RSA Cryptography Standard, now in RFC 3447, “Public-Key Cryptography Standards 
(PKCS) #1: RSA Cryptography Specifications Version 2.1”, February 2003. 
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 PKCS #3 – Diffie-Hellman Key Agreement Standard 

 PKCS #5 – Password-based Encryption Standard, now in RFC 2898, “PKCS #5: Password-Based 
Cryptography Specification Version 2.0”, September 2000 

 PKCS #7 – Cryptographic Message Syntax Standard, now in RFC 2315, “PKCS #7: Cryptographic 
message Syntax Standard Version 1.5”, March 1998. The specifics of S/MIME, which is a large 
part of this standard have been refined in RFC 3851, “Secure/Multipurpose Internet Mail 
Extensions (S/MIME) Version 3.1 Message Specification”, July 2004; and RFC 3852, 
“Cryptographic Message Syntax (CMS)”, July 2008. The most recent specification of S/MIME is 
RFC 5751, “Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message 
Specification”, January 2010. 

 PKCS #8 – Private-Key Information Syntax Standard, now in RFC 5208, “Public-Key Cryptography 
Standards (PKCS) #8: Private-Key Information Syntax Specification Version 1.2”, May 2008 

 PKCS #10 – Certification Request Standard, now in RFC 2986, “PKCS #10: Certification Request 
Syntax Specification Version 1.7”, November 2000 

 PKCS #11 – Cryptographic Token Interface (Cryptoki) 

 PKCS #12 – Personal Information Exchange Syntax Standard 

 PKCS #15 – Cryptographic Token Information Format Standard, now ISO/IEC 7816-15. 
 
The original PKCS standards are still available today if you are interested, but most of the important 
ones have been incorporated into the RFC standards track and continue to evolve there. However, even 
today, we often refer to creating a PKCS #10 Certificate Signing Request, using the PKCS #11 Cryptoki 
Application Program Interface to a cryptographic module, or exporting public and/or private keys 
securely in a PKCS #12 package. 
 
 
A.2 – Cryptography, Encryption and Decryption 
 
Cryptography involves scrambling information in such a way that all of the information is still present, 
but recoverable only by a recipient who has access to the scheme by which it can be unscrambled. In a 
very simple case, alphabetic substitution could map each letter of the alphabet to the letter 3 further 
along, so that A becomes D, B becomes E, etc. That is called an encryption algorithm. Here is the 
complete mapping from the letters in the message (the plaintext) to the encrypted letters (the 
ciphertext) for this scheme. To encrypt a message, you would take each letter (in the first line) and map 
it to the one below it (in the second line). 
 
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

 
The word “HELLO” would become “KHOOR”. To unscramble this message, the recipient would need to 
know how to reverse the encryption (a decryption algorithm), which in this case would involve mapping 
each letter to the one three before each of the encrypted letters. So, D would become A, E would 
become B, etc. You could use the same two lines, but instead locate each letter from the ciphertext in 
the second line and replace it with the letter above it (in the first line). Hence “KHOOR” would become 
“HELLO”. 
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In this case, the algorithm must be kept secret, because knowledge of it would allow anyone to decrypt 
the message. The security of this system depends on keeping the algorithm secret. 
 
 
A.2.1 – Cryptographic Keys 
 
The “shift by 3” encryption system is so simple that almost anyone could figure out how to crack a 
message encrypted with it in just a few minutes. To make it a stronger system, instead of always shifting 
by three characters, you could shift by n letters (where n could be any number from 0 to 25). The “shift 
by 3” scheme would be a special case of this “shift by N” scheme, where N = 3. In the “shift by N” 
scheme, the value of N is known as an encryption key. To decrypt a message, the recipient needs to 
know not only the decryption algorithm, but also the specific key used to encrypt a given message. One 
day, the sender might use N=7 (“HELLO” becomes “OLSSV”), but on the next, they might use N=12 
(“HELLO” becomes “TQXXA”). The same plaintext results in different ciphertexts, depending on the key 
used.  
 
In general, real encryption algorithms are key driven. The same algorithm can produce radically different 
ciphertexts, depending on which key is used. A key is really just an ordered string of bits. You might think 
of the encryption algorithm as a generalized machine, in which case a particular key would be like one of 
many possible cams, which control the operation of the machine (how it slices and dices the data). 
Replace the cam with a different one and the same machine slices and dices the data in a completely 
different way.  
 
In fact, modern algorithms are designed in such a way that complete knowledge of the general 
algorithm itself can be made available to anyone, and it does not make it any easier for them to crack a 
message encrypted with a key that they do not know. In other words, the security of the system is 
entirely dependent on keeping the keys used (not the details of the algorithm) secret. Full details of 
most modern encryption algorithms are not only known, they are standardized, peer reviewed, and 
available to anyone that is interested. The more good cryptanalysts that have reviewed an algorithm, 
and pronounced it strong (difficult to crack), the better. It is not possible to prove than an algorithm is 
uncrackable, but you can build evidence that as yet, no one has managed to crack it (or at least, no one 
has admitted to being able to crack it). 
 
 
A.2.2 – Symmetric Key Cryptography 
 
In the “shift by N” system, the same key that was used to encrypt some plaintext is also used to decrypt 
the resulting ciphertext. This is analogous to your house key. You use the same key to lock your house 
when you leave, and to unlock it when you return. This is the defining characteristic of symmetric key 
cryptography which has been around for about 2,000 years. In comparison, with asymmetric key 
cryptography (invented only recently), one key of a related pair of keys is used to encrypt some 
plaintext, but only the other key the pair can decrypt the resulting ciphertext. Not even the key it was 
encrypted with can decrypt it. This is not as intuitive as symmetric key cryptography, but allows some 
remarkable things to be done. 
 
Standards related to symmetric key cryptography include: 
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 FIPS PUB 46 – Data Encryption Standard (January 1977) 

 FIPS PUB 46-1 – Data Encryption Standard (January 1988) 

 FIPS PUB 46-2 – Data Encryption Standard (December 1993) 

 FIPS PUB 46-3 – Data Encryption Standard (October 1999) (includes Triple DES) 

 FIPS PUB 197 – Advanced Encryption Standard (November 2001) 

 RFC 3565, “Use of the Advanced Encryption Standard (AES) Encryption Algorithm in 
Cryptographic Message Syntax”,  July 2003 

 RFC 3566, “The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec”, September 2003 

 RFC 3602, “The AES-CBC Cipher Algorithm and Its Use with IPsec”, September 2003 
 
 
A.2.3 – Cryptanalysis 
 
The algorithm just described (“shift by N”) could be known by the recipient in advance, but somehow 
the sender would have to let the recipient know which key (which value of N) was used to encrypt a 
given message. There are only 26 possible keys (0 to 25), which would only take 5 bits to represent 
(actually 5 bits would allow up to 32 possible keys). A key length of 5 bits is not very secure. It would not 
take long to try every possible key, and chances are, only one of the possible values would result in an 
English text. If the message was longer, or the same key was used for all messages on a given day, once 
a third party figured out the key being used, they could easily decrypt the rest of the message, or all of 
the messages encrypted with it.  
 
Note that in the “shift by N” system, the key N=0 is a weak key, as the ciphertext is identical to the 
plaintext. Real encryption algorithms may have weak keys as well. DES has 16 known weak keys, which 
you have to check for when you generate a random DES key (although the probability of creating one is 
quite low). It is amazing that after all the slicing and dicing that DES does on the binary level, the result 
(using a weak key) could be exactly what you started with, but that is the way it works. 
 
 Cracking secure messages (being able to recover the plaintext of an encrypted message without having 
access to the correct key) is called cryptanalysis. There are many techniques used to cryptanalyse 
encrypted messages. For example, with alphabetic substitution schemes, letter frequencies can help you 
identify the encrypted characters for the most common letters (the character that appears most often in 
the ciphertext is probably the code for E, etc). With modern algorithms there are other techniques. With 
DES, a technique called differential cryptography was used to determine its real strength only justified a 
56-bit key – anything longer would only give the illusion of more strength. Sometimes cryptanalysts can 
completely cryptanalyse a new proposed algorithm, which means it is cracked, and messages can be 
decrypted without knowledge of the keys used. You might think of cryptography as building secure safes 
and cryptanalysis as safe cracking. Cryptology is the science that includes both cryptography and 
cryptanalysis. RSA was founded by two cryptographers and one cryptanalyst. The cryptographers 
proposed one asymmetric key system after another, then the cryptanalyst would analyze and break 
them. The cryptographers would then try to design one more difficult to break, based on how the 
previous system was broken. When an algorithm remained unbroken after quite an effort, they released 
it as the RSA algorithm. Since then, many other cryptanalysts have tried to break it, with no success. The 
RSA algorithms is now specified in RFC 4055, “Additional Algorithms and Identifiers for RSA 
Cryptography for use in the Internet X.509 Public Key Infrastructure Certificate and Certificate 
Revocation List (CRL) Profile”, June 2005. 
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The “shift by N” encryption scheme can be implemented with two disks or two rings, each of which has 
the entire alphabet written on them, but one of which can be rotated to put A on the plaintext ring next 
to any letter on the ciphertext ring. Various Radio and TV shows (as well as Cereal manufacturers) have 
included these cipherdisks as premiums over the years. It is a real (but not very strong) cryptographic 
system, complete with the concept of a key. 
 

 
 

A Secret Decoder Ring 
From Wikipedia Creative Commons 

 
A.2.4 – Cryptographic Strength 
 
Modern real world cryptographic systems don’t do just alphabetic substitution, or work on just ASCII 
text. They accept a block of binary data as input, and scramble information in very complex ways at the 
bit level. The output is also a block of binary data. A scheme like the DES (Data Encryption Standard) has 
a block size of 64 bits, using a 56-bit binary key, producing a 64 bit binary ciphertext. With 56-bit keys, 
there are 256 (about 7.2 E+16) possible keys. Trying every possible key is known as the brute force attack. 
When DES was released in 1975, that number of keys was effectively considered infinite. However, in 



282 

 

1998, a group at the Electronic Frontier Foundation built a machine called Deep Crack with extensive 
hardware parallelism that could try roughly a million DES keys every microsecond. At this rate, it took 
about 56 hours to try all possible keys.  
 
RSA ran a “DES challenge” that involved decrypting a plaintext containing an English phrase in ASCII 
characters. There were several “crowd computing” attacks, which divided the entire key space into 
millions of chunks, which individuals could download and try to find the right key among. These typically 
took several months to locate the valid key, even with tens of thousands of people searching for it. With 
Deep Crack the problem was recognizing when it had found the right key. Most decryptions with a 
wrong key resulted in non-ASCII binary gibberish, which could be discarded. Another computer checked 
the relatively few decryptions that resulted in ASCII text to see if it contained any English words. If so, a 
human was alerted, who could determine if a valid English phrase was recovered. After Deep Crack, DES 
was considered no longer “strong”. The assumption was that if a few people could create such a 
machine with a budget of about $200,000 that at least some governments (and certainly the U.S. NSA) 
probably already had and used such machines. 
 

 
 

One of the circuit boards from Deep Crack, with multiple DES chips 
(from Wikipedia Creative Commons) 
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Each additional bit of key length doubles the time that Deep Crack would take to find a key, so here is a 
table of how long it would take for various common key lengths: 
 
 Key Length Time for Brute Force Attack with Deep Crack 
 
 56 bits  56 hours 
 64 bits  14,336 hours, or about 597 days 
 80 bits  107,000 years 
 128 bits  3.02 E+19 years 
 256 bits  1.02 E+58 years (longer than the heat death of the universe) 
 
As you can see, with a symmetric key algorithm, the time required for a brute force attack quickly 
increases with increasing key length to totally impractical time scales. Even 128 bit keys are probably 
sufficient for most purposes. With 256 bit keys the time is greater than the expected life of the universe. 
 
The most common symmetric key algorithm in use today is the AES (Advanced Encryption Standard) 
which replaced DES in 2000. It is very fast, and can use either 128 or 256 bit binary keys. There are 
currently no known attacks against AES that are faster than brute force. Several algorithms were 
entered in a competition to replace DES as the new standard, including TwoFish (successor to BlowFish) 
and Serpent. The algorithm that won (and is now known as AES) was called Rijndael (prounounced RAIN-
dell). There are no royalties required for use, but many countries have laws restricting use of strong 
cryptography.  
 
 
A.2.6 – Key Management 
 
Whether you are using the “shift by n” scheme or AES, the sender must somehow securely 
communicate the symmetric key they used to the message recipient. This is not easy to do, as if it is sent 
via any plaintext channel (e.g. spoken over a telephone call, sent by fax, etc), then the easiest way to 
attack the system is to intercept the key. Systems based on symmetric key cryptography alone have very 
complex key management systems, and these are usually the weakest link of any such system. Kerberos 
is an example of a cryptographic system based entirely on symmetric key cryptography (actually DES). 
 
 
A.3 – Message Digest 
 
Another cryptographic algorithm (message digest) does not include the entire contents of the input text 
in the output, even in scrambled form. It is not possible to recover the plaintext from a generated 
message digest. It is a one way algorithm. In fact, regardless of how large the input document is, the 
output is a fixed length (for a given message digest algorithm). For example, the MD5 message digest 
algorithm produces a 128 bit output, SHA1 produces a 160 bit output, and SHA-256 produces a 256 bit 
output. The output characterizes the input document. Any change at all in the input document is 
amplified by the message digest algorithm. Even a single bit difference in the input would result in a 
totally different output. This makes it very good for determining if two documents are identical (or the 
same document at two different points in time).  If a document is modified in any way at all (changing, 
deleting or adding characters or bits), the generated message digest will be different after the 
modification. It is like an extremely sensitive checksum. The term Message Authentication Code (MAC) is 
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also sometimes used for Message Digest (not to be confused with the network term MAC, which refers 
to the Media Access Control layer, or MAC Addresses). 
 
The following RFCs define Message Digest Algorithms: 
 

 RFC 1321, “The MD5 Message-Digest Algorithm”, April 1992 

 RFC 3174, “US Secure Hash Algorithm 1 (SHA1)”, September 2001 

 RFC 3874, “A 224-bit One-way Hash Function:  SHA-224”, September 2004 

 RFC 4634, “US Secure Hash Algorithms (SHA and HMAC-SHA)”, July 2006 
 
Note that RFC 4634 includes definition of the newer SHA-224, SHA-256, SHA-384 and SHA-512. 
 
 
A.4 – Asymmetric Key Cryptography 
 
In the early 1970s, some English cryptographers at GCHQ (James Ellis, Clifford Cocks and Malcolm 
Williamson) invented an entirely new type of cryptography, which was kept classified and not revealed 
until 1997. It was re-invented independently in 1976 by two researchers named Whitfield Diffie and 
Martin Hellman (based on work by Ralph Merkle). This scheme is called asymmetric key cryptography, 
and it involves using not one key, but a related pair of keys. If you encrypt something with one of the 
keys, only the other key of a pair will decrypt the ciphertext produced. Even the key used to encrypt the 
plaintext will not correctly decrypt the ciphertext. Later, three mathematicians from M.I.T. named Ron 
Rivest, Adi  Shamir and Leonard Adleman created a company called RSA that was the first to 
commercially exploit this concept. Their asymmetric key algorithm (also called RSA) is still in extensive 
use today. 
 
All asymmetric key algorithms depend on some very hard mathematical problem that is far faster to do 
in one direction (e.g. multiplying two large prime numbers together) than the other direction (e.g. 
factoring a giant product of two primes into the two prime numbers). The mathematical problems are 
referred to as trap door functions (because a trap door allows things to go easily in one direction, but 
not in the other). The fast direction (e.g. multiplying two giant primes) is used when you generate a pair 
of matched keys, but deriving the private key from the public key involves working the problem in the 
reverse direction (factoring the product of the two primes). The time required to do this increases 
greatly with the length of the product. A product that is 512 bits long (about 154 decimal digits) is 
considered weak. A product that is 1024 bits long (about 308 decimal digits) is considered fairly strong. A 
product that is 2048 bits (about 616 decimal digits) or longer is considered very strong. As computing 
power increases (and factoring theory improves) year by year, what was once considered strong is later 
considered weak, so key lengths must slowly increase. For example, cracking a 512 bit RSA key is 
estimated to take about 7,000 MIP-years to accomplish. In 1979, the Motorola 68000 ran at about 1 
MIPS, so it would take 7,000 years for one machine (or 70 years for 100 machines) to break one 512 bit 
key. In 2000, the AMD Athlon ran at about 3500 MIPS, so it would take about 2 years to do the same 
thing. The most recent Intel Core i7 (i980EE) runs at about 147,000 MIPS, so one machine with this CPU 
would be able to crack a 512 bit key in about 18 days. Such increases will eventually result in having to 
use impractically long keys with RSA. Fortunately, a newer asymmetric key algorithm called Elliptic Curve 
Cryptography (ECC) has better characteristics (strength goes up more rapidly with increasing key length 
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than it does with RSA). At some point, as computing power increases, cryptographic systems will have to 
switch over to using ECC. The standards already support it. 
 
There is also an asymmetric key algorithm called the Digital Signature Algorithm (DSA), created by the 
U.S. NSA (National Security Agency). DSA is part of the Digital Signature Standard (DSS) which is specified 
in FIPS 186. The DSS was adopted in 1996 as FIPS 186-1, and then expanded in 2000 as FIPS 186-2, and 
again in 2009 as FIPS 186-3. There is no general encryption algorithm (e.g. for digital envelope) 
associated with DSA – it is just for digital signatures. 
 
Let’s say Alice creates two keys. She publishes one of them (called her public key) to the entire world. 
The other one (called her private key), she never shows to anyone. Anyone in the world can obtain and 
use her public key to encrypt things, but she is the only one than can decrypt things encrypted with her 
public key. So if she wanted to send something securely to Bob, she would obtain Bob’s public key (even 
through insecure channels – it does not matter who sees it). She would encrypt her message using Bob’s 
public key, and send the encrypted message to him. Anyone in the world would be able to send Bob 
such a message, because all they need is his public key. He would use his private key to decrypt it. He is 
the only person in the world who could do this (assuming no one has discovered his private key). This 
provides complete privacy, without having to do complex and insecure symmetric key distribution. 
 
 
A.4.1 – Digital Envelopes 
 
Compared with symmetric key cryptography, asymmetric key cryptography is very slow (in terms of how 
many bytes per second can be encrypted), so it is not commonly used to encrypt entire long messages. 
It is usually used just to encrypt a short (e.g. 128 bit) symmetric session key or a short (e.g. 160 bit) 
message digest. So, in a real system (such as S/MIME e-mail), Alice would generate a random symmetric 
session key (just for this e-mail message, never to be used again), encrypt the message with it (using 
AES), then encrypt the symmetric session key and Bob’s public key (using RSA). She would send both the 
encrypted message and the encrypted session key to Bob. He would first decrypt the session key with 
his private key (using RSA), then use the recovered session key to decrypt the message (using AES). This 
is called creating a digital envelope. A digital envelope provides privacy. Asymmetric key cryptography 
solves the problem of how to securely distribute symmetric keys.  
 
 
A.4.2 – Digital Signatures 
 
Asymmetric key cryptography is also useful for creating digital signatures, when used in combination 
with a message digest algorithm. As an example, to produce a digital signature of a document, Alice first 
produces a message digest of the message (using SHA1) then encrypt the message digest with her 
private key (using RSA). The result would be encoded into ASCII and appended to the message. She 
would send the message including the digital signature to Bob. Bob would strip off the digital signature, 
and produce a new message digest of the message (using SHA1). He would also decrypt the encrypted 
message digest with Alice’s public key (using RSA). He would then compare the recovered message 
digest with the newly generated message digest. If they match, then the digital signature is valid. If they 
don’t match then either the message was signed using someone else’s private key (hence was probably 
sent by someone else), or the message had been tampered with along the way. In either case, the 
message should not be accepted as valid. A digital signature provides sender authentication (knowing 
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for certain that it was sent by the person it appears to be from), and message integrity (being able to 
detect any possible change to the message). These are two very useful things to know about a message. 
 
 
A.4.3 – Combined Digital Signature and Digital Envelope 
 
By itself, a digital signature does not provide privacy. You may not care who reads a message, but you 
want to know for certain who it came from, and whether or not it has been tampered with along the 
way. In this case, only a digital signature is needed. If you also want privacy, then you must both digitally 
sign and then digitally envelope the message. There is no conflict between the two processes. S/MIME 
e-mail allows you to do neither, either or both. They are completely independent processes (although if 
combined, the digital signature must be done first and checked last). 
 
 
A.4.4 – Public Key Management and Digital Certificates 
 
When Alice sends Bob a digitally signed message, she has all the keys she needs (her own private key) at 
the time she composes the message. When he is reading the message, Bob needs Alice’s public key, 
which she can simply append to the message. If Alice appended her key, Bob can use the appended 
public key to check the signature. If she didn’t, Bob can obtain her public key in various other ways, 
perhaps she published her key on a website via HTTP, or in an LDAP directory. 
 
When Alice sends Bob a digitally enveloped message, she needs Bob’s public key, which she may not 
have. Bob might have published it on his website, or in an LDAP directory, or he could simply send Alice 
a digitally signed message first. Many secure e-mail systems save the public keys of the senders of all 
digitally signed messages in case you want to later send them digitally enveloped messages. When Bob 
receives a digitally enveloped message, he has all the keys he needs to open it (his own private key). 
 
Regardless of how Bob obtained Alice’s public key, how does he know for certain that the key really 
belongs to Alice? In general, anytime you use a public key, you must determine if it is the real public key 
for that user. If Charlie can trick Bob into using his public key to check what he thinks is Alice’s signature, 
Charlie can sign the message using his own private key and Bob will think it is a valid signature from Alice 
(this is called the public key substitution threat). 
 
A public key must be distributed embedded in a digitally signed document that includes other 
identifying information, such as the key owner’s name, email address, expiration date, etc. This is called 
a public key digital certificate. It should be produced and signed by a trusted third party (someone other 
than Alice and Bob, but whom they both trust). For example, VeriSign will produce digital certificates for 
anyone. Such an organization is called a Certification Authority or CA for short. They must verify all of 
the information to be embedded in the digital certificate as correct, and operate in a secure manner to 
prevent bogus certificates from being issued. The digital signature binds all of the included information 
together.  
 
The trust domain for a given application consists of all the involved parties. For a bank and their 
customers, the bank could issue digital certificates to their customers and supply them with the 
necessary root certificates to install in their browsers (this is called a private hierarchy PKI). If the 
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involved parties can be just anyone in the world, then the trusted third party must be someone like 
VeriSign, who have embedded their root certificate in all browsers (this is called a public hierarchy PKI). 
 
 
A.4.4.1 – Chain of Trust 
 
Since each person’s digital certificate is signed by a Certification Authority (using their own private key), 
you must verify the signature in each person’s digital certificate by using the CA’s public key. How do 
you know that you have the real public key for the CA, and not that of some hacker? The necessary 
public key is provided in yet another digital certificate (an intermediate certificate). The intermediate 
certificate is signed by the CA’s root private key, and you verify the intermediate certificate’s digital 
signature with the CA’s root public key. The root public key is provided to you in a self-signed certificate 
(one signed by the root private key), but is installed in your application (e.g. your browser) by the vendor 
so you can trust it. Verifying all of the certificates from that of the person you are communicating with, 
up to the root certificate of the relevant Certification Authority is called climbing a chain of trust.  
 
 
A.4.5.2 – Certificate Validity Period 
 
Like a credit card, a digital certificate has an expiration date, past which it should not be accepted by 
anyone. Certificates are usually renewed (re-issued) once a year, after re-verifying all the embedded 
information. This insures that the embedded information has been verified recently. Unlike credit cards, 
digital certificates also have a starting date. The certificate is only valid from the starting date until the 
expiration date. 
 
 
A.4.5.3 – Certificate Revocation 
 
When you use your credit card in a store, they used to check its number against a printed book of 
revoked card numbers (from people who didn’t pay their credit card bill). If your number was in the 
book, the store would not accept your card, and would usually cut it up. Later this was automated, so 
that the number (and the amount of the transaction) was sent online to the credit card company, who 
determined if the card was still valid, and the amount was within their remaining credit limit for that 
card. 
 
Digital Certificates can also be revoked before their expiration date. There are two mechanisms for 
doing this: Certificate Revocation Lists and Online Certificate Status Protocol (OCSP). The first scheme 
(CRL) is the older, and is similar to the printed books of revoked credit cards. CRLs are published (via 
HTTPS) periodically (usually daily), so there may be some delay before everyone can become aware that 
a certificate has been revoked. The other scheme (OCSP) is more recent, but allows users to determine 
the current status of certificates instantly. Not all client applications support OCSP. 
 
 
A.4.5.4 – Public Key Infrastructure (PKI) 
 
It is the responsibility of any client or server that uses digital certificates to verify all of these things 
before accepting a certificate as valid (for an example, see the details of the SSL/TLS handshake later in 
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this chapter). The issuance of digital certificates, and all of the things related to the management of 
them, is called a Public Key Infrastructure (PKI). Creating and running a PKI is not a trivial thing, but it is 
necessary for any system that uses asymmetric key cryptography. 
 
 
A.5 – Hash-Based Message Authentication Code (HMAC) 
 
There are also some message digest algorithms that use a key, similar to an encryption algorithm. They 
still produce a fixed length message digest, like a regular message digest, but a key is used in the 
process, which modifies the way the digest is created. For a given input text, and a given HMAC 
algorithm, if you change the key, you will get a very different message digest. This is kind of a 
lightweight digital signature (no asymmetric cryptography is used). HMAC is used in IPsec for the 
Authentication Header. The sender produces an HMAC of the relevant fields of the packet, using a given 
key. One key is shared securely with the recipient for a lot of packets, via either “shared secret key” or 
via IKE. Upon receipt of a packet, the recipient calculates the HMAC of the same relevant fields, using 
the HMAC key that was used by the sender. If an identical message digest is produced, then this is proof 
that the relevant fields of the packet have not been tampered with, and could only have been sent by 
the purported sender (not by someone else).  
 
Using HMAC is much faster than doing a full digital signature, which is why it is “lightweight”. A full 
digital signature would be more secure, and far more difficult to fake, but the computing overhead on 
every packet would be enormous, and packet throughput would drop dramatically. Likewise for ESP, a 
full digital envelope is not used for every packet, but only symmetric key encryption is used, with a key 
that is exchanged once (for a large number of packets) using either “shared secret” or IKE. 
 
Relevant standards for Hash-Based Message Authentication Codes are: 
 

 FIPS PUB 198, The Keyed-Hash Message Authentication Code, March 2002 

 RFC 2104, “HMAC: Keyed-Hashing for Message Authentication”, February 1997. This defines 
several algorithms, including HMAC-MD5, HMAC-SHA1 and HMAC-RIPEMD (based on the MD5, 
SHA1 and RIPEMD message digests, respectively). 

 RFC 2403, “The Use of HMAC-MD5-96 within ESP and AH”, November 1998 

 RFC 2857, “The Use of HMAC-RIPEMD-160-96 within ESP and AH”, June 2000 

 RFC 4634, “US Secure Hash Algorithms (SHA and HMAC-SHA)”, July 2006 

 RFC 4868, “Using HMAC-SHA-256, HMAC-SHA-384 and HMAC-SHA-512 with IPsec”, May 2007 
 
 
A.6 – Internet Key Exchange (IKE) 
 
Internet Key Exchange is part of IPsec. It is used to automate the distribution of symmetric session keys 
to any number of IPsec enabled nodes, in a secure manner. It depends heavily on asymmetric key 
cryptography. IKE is based on the Diffie-Hellman Key Agreement algorithm. It is covered in more detail in 
the chapter on TCP/IPv6 Advanced Protocols. 
 
Relevant standards are: 
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 RFC 2409, “The Internet Key Exchange (IKE)”, November 1998 

 RFC 4306, “Internet Key Exchange (IKEv2) Protocol”, December 2005 
 
 
A.6.1 – IKE using IPsec Digital Certificates 
 
If IKE is used to automate IPsec key management, a full PKI must still be deployed, to create and manage 
the IPsec digital certificates. One certificate must be generated for each node that participates in IPsec 
traffic. With IPsec certificates, the public key is bound to IP address(es), not to a Fully Qualified Domain 
Name and an organization name (as in server certificates) or to a person’s name and e-mail address (as 
in client certificates). To simplify the process of having every IPsec enabled node obtain the necessary 
IPsec digital certificate, the Simple Certificate Enrollment Protocol (SCEP) is typically used to allow nodes 
tor request and obtain IPsec certificates from a CA without the complex and time consuming manual 
processes used to obtain server or client certificates. 
 
The shared secret key distribution mechanism is widely used with current implementations of IPsec , but 
it is likely that only IPsec certificate based automated key exchange with IKE will be allowed in the 
future. 
 
Relevant standards for IPsec Digital Certificates in IKE are: 
 

 RFC 4809, “Requirements for an IPsec Certificate Management Profile”, February 2007. 

 RFC 5406, “Guidelines for Specifying the Use of IPsec Version 2”, February 2009 
 
 
A.6.2 – Diffie-Hellman Key Exchange 
 
One of the first applications of asymmetric cryptography (once it was re-invented) was to securely 
exchange a symmetric session key between two communicating parties. This is still used today as the 
heart of the Internet Key Exchange (IKE).  
 
Let’s use Diffie-Hellman to exchange a symmetric session key between Alice and Bob. First there are two 
public parameters “p” and “g”. The “p” parameter is a very large prime number, while “g” is an integer 
less than p with certain characteristics. Anyone can know these values. They can be agreed to and 
shared well in advance, even over insecure channels. They can even be defined and built into a 
cryptographic system, such as IKE. 
 

1. Alice generates a random private value “a”, and Bob independently generates another random 
private value “b”. They don’t share these values with anyone, even each other. 

2. Alice generates her public value X= ga mod p, and Bob generates his public value Y = gb mod p. 
3. Alice sends her public value (X) to Bob, and Bob sends his public value(Y) to Alice, over an 

insecure channel 
4. Alice computes kab = (Y)a mod p, and Bob computes kba = (X)b mod p 
5. Remarkably, kab = kba, so Alice and Bob now have a shared secret value, from which a symmetric 

session key can be derived. 
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It is computationally infeasible to try to derive the shared secret given Alice’s and Bob’s public values 
(which are sent in the clear) due to the discrete logarithm problem (another trap door function), 
assuming p is sufficiently large.  
 
 
A.7 – Secure Socket Layer (SSL) / Transport Layer Security (TLS) 
 
Probably the most popular cryptographic application is SSL/TLS, which is used to secure HTTP (web) 
connections. It was originally created by Netscape in their web server and web browser. SSL 2.0 
implemented server to client authentication and symmetric key exchange (in SSL 2.0). In a non-secure 
connection (e.g. web over port 80), a client connects to the server, and is granted access. No 
authentication is performed, no symmetric key is exchanged, and traffic is exchanged between the 
server and the client in plaintext. 
 
SSL is implemented as a shim layer between the application layer and the Transport Layer. Only TCP is 
supported in the Transport Layer – there is no SSL or TLS for UDP. The application must have knowledge 
of SSL and call socket I/O routines in the SSL library to create a socket, to read and write data, and to 
close the socket (instead of directly calling the usual routines in the Transport Layer). Significant changes 
are required to the source code of both the server application and the client application. 
 
SSL can be used in almost any query/response client-server protocol which is implemented over TCP. 
With SSL, there is both a non-secure port and a corresponding secure port for each protocol. It has been 
successfully used in HTTP (80/443), LDAP (389/689), POP3 (110/995), IMAP (143/993) and SMTP 
(25/465). A commercial toolkit from RSA (BSAFE), or an open source toolkit (OpenSSL) can be used to 
add SSL to any client-server network application. 
 
A server certificate must be obtained and installed in the server application. This digital certificate binds 
a Fully Qualified Domain Name and an organization name to the public key. The root certificate of the 
server certificate’s hierarchy must be installed in both the server application and the client application, 
along with any necessary intermediate certificate(s). These might be hard wired into the applications by 
the vendor, or installed manually by a system administrator. 
 
 If a connection is attempted via the secure port (e.g. web over port 443), then the following exchange 
takes place before the normal web traffic continues: 
 

1. The server sends its digital certificate to the client in plaintext. 
2. The client verifies the validity of the server certificate as follows: 

a. The digital signature of the server certificate must be verified using the public key 
intermediate certificate of the signer (e.g. VeriSign).  

b. The digital signature of the intermediate certificate must be verified using the public key 
root certificate of the server certificate signer (e.g. VeriSign), as hardwired in the web 
browser by the vendor 

c. The current time must be within the validity period of the certificate (after the starting 
date, but before the expiration date) 

d. The Fully Qualified Domain Name from the browser URL must match the Fully Qualified 
Domain Name (common name) in the server certificate 
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e. The server certificate’s revocation status must be checked either by consulting the 
appropriate Certificate Revocation List for the server certificate, or via OCSP. 

3. The client and the server negotiate the strongest cryptographic algorithms that they hold in 
common, both for asymmetric key cryptography (e.g. RSA 1024 bit) and asymmetric key (e.g. 
RC4 128 bit). 

4. The client generates a challenge string, encrypts it with the public key from the server certificate 
using the agreed upon asymmetric key algorithm, and sends the encrypted string to the server. 

5. The server decrypts the encrypted challenge string using its own private key and the agreed 
upon asymmetric key algorithm. It then returns the result to the client, where it must match the 
original challenge string which the client had created. This establishes server to client 
authentication. Only the owner of the private key associated with the public key from the server 
certificate would be able to pass this cryptographic challenge. 
 
[optional client authentication handshake in SSL 3.0 goes here – see below] 
 

10. The client generates a symmetric session key for the agreed upon symmetric key algorithm and 
key length. It encrypts this symmetric key using the server’s public key, and the agreed upon 
asymmetric key algorithm. The encrypted key is sent to the server. 

11. The server receives the encrypted symmetric session key and decrypts it using its private key 
and the agreed upon asymmetric key algorithm. Now the client and the server share a common 
symmetric session key, which has been exchanged securely. Even if this entire exchange is 
intercepted by a third party, the symmetric session key cannot be discovered. 

 
Following these steps, all traffic between client and server is encrypted. The sender encrypts the traffic 
using the shared symmetric session key, and the recipient decrypts the traffic using the same key. 
Periodically (based on time and or traffic volume) a new symmetric session key will be negotiated and 
used. 
 
 
A.7.1 – Secure Socket Layer 3.0 – Optional Strong Client Authentication 
 
In SSL 3.0 (1996), Netscape added an optional second part of the cryptographic handshake. It is enabled 
by selecting strong client authentication on the server. This can be optional (strong client authentication 
allowed), in which case if the client has no acceptable client certificate the server will fall back to 
username/password authentication. It can also be mandatory (strong client authentication required). It 
this case, if the client has no acceptable client certificate, it will not be able to connect to the server.  
 
The root certificate of the client certificate hierarchy (plus any intermediate certificates) must be 
installed in both the server and client applications, either hardwired in the application by the vendor, or 
installed manually by the administrator. 
 
After step 5 above, if strong client authentication is enabled, the handshake includes the following new 
steps: 
 

6. The server sends a request to the client to present a client certificate, including a filter that 
specifies criteria for acceptable client certificates 
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7. The client presents a list of all acceptable client certificates found in its certificate database, 
from which the user selects one. That certificate is sent to the server in plaintext. 

a. The digital signature of the client certificate must be verified using the public key 
intermediate certificate of the signer (e.g. VeriSign).  

b. The digital signature of the intermediate certificate must be verified using the public key 
root certificate of the client certificate signer (e.g. VeriSign), as hardwired in the web 
browser by the vendor (or installed by the user) 

c. The current time must be within the validity period in the client certificate (after the 
starting date, but before the expiration date) 

d. The common name from the client certificate is extracted to use as the login name. 
e. The server certificate’s revocation status must be checked either by consulting the 

appropriate Certificate Revocation List for the server certificate, or via OCSP. 
8. The server generates a challenge string, encrypts it with the public key from the client certificate 

using the agreed upon asymmetric key algorithm, and sends the encrypted string to the client. 
9. The client decrypts the encrypted challenge string using its own private key and the agreed upon 

asymmetric key algorithm. It then returns the result to the server, where it must match the 
original challenge string which the server had created. This establishes client to server 
authentication. Only the owner of the private key associated with the public key from the client 
certificate would be able to pass this cryptographic challenge. At no point did the owner of the 
private key have to expose it to anyone in order to prove possession of it. 
 

 
A.7.2 – Transport Layer Security (TLS) – Continuation of SSL as an IETF Standard 
 
When Netscape released their proprietary SSL 3.0 standard to the IETF, it was further refined and 
extended as TLS 1.0. Additional cryptographic suites were installed, including Diffie-Hellman asymmetric 
key algorithms and additional symmetric key algorithms. Also, an optional handshake mechanism was 
defined for those protocols that could support it (e.g. SMTP) which allows both secure and non-secure 
connections to use the same port. A connection over TLS begins in the non-secure state, but a 
negotiation (e.g. using ESMTP extension announcements and commands) can initiate the SSL/TLS 
handshake and switch to a secure connection over the same port. 
 
There are really no RFCs concerning SSL, as it was a Netscape proprietary protocol. Here are some of the 
standards related to TLS: 
 

 RFC 2246, “The TLS Protocol Version 1.0”, January 1999.  

 RFC 2487, “SMTP Service Extensions for Secure SMTP over TLS”, January 1999. 

 RFC 2595, “Using TLS with IMAP, POP3 and ACAP”,  June 1999 

 RFC 2817, “Upgrading to TLS Within HTTP/1.1”, May 2000 

 RFC 3546, “Transport Layer Security (TLS) Extensions”, June 2003 

 RFC 4217, “Securing FTP with TLS”, October 2005 

 RFC 4346, “The Transport Layer Security (TLS) Protocol Version 1.1”, April 2006 

 RFC 5246, “The Transport Layer Security (TLS) Protocol Version 1.2”, August 2008 
 
 
A.7.3 – Link Oriented Nature of SSL/TLS 



293 

 

 
SSL/TLS is inherently a link-oriented protocol. It can only secure a single connection such as web browser 
to web server. For multi-connection scenarios, such as e-mail (client to local server, local server to 
remote server and remote client to remote server), there is no simple way to insure that all of the links 
will use SSL/TLS protection, but even if they do, the traffic will be in plaintext on each intervening node, 
e.g. on intermediate mail servers. S/MIME is the preferred technology for securing e-mail. It takes place 
in the sending and receiving client, and is transparent to any intervening servers. This is called “end to 
end”.  
 
 
A.7.4 – SSL-VPN 
 
VPNs typically need to be end-to-end as well, and IPsec is. Unfortunately IPsec does not work well on 
IPv4 networks due to the omnipresence of NAT. Because of this, on the First Internet, many people now 
use a VPN scheme based on SSL, called “SSL-VPN”. There is no IETF standard for this, it uses an 
Application Layer technology (SSL) in the Internet Layer, and is inherently link-oriented. The only 
alternative is to add NAT traversal technology to all IPsec clients and servers, which greatly complicates 
them and introduces serious security issues. VPNs will work well using the approved technology (IPsec) 
without any NAT traversal mechanisms, only once IPv6 connections are available between the nodes to 
be connected with VPNs.
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